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The Tokyo metropolitan area and surrounding rural regions 
(Tokyo Region) are at risk from earthquakes and tsunamis that 
result from the triple junction of the Pacific (PAC), Philippine 

Sea (PHS) and Continental (CON) plates (Fig.  1a). The intersec-
tion of these plates produces three potential earthquake sources 
from three plate boundaries: CON/PHS (Sagami Trough), CON/
PAC (Japan Trench) and PHS/PAC (Izu–Bonin Trench) (Fig. 1b,e). 
The third boundary, unconsidered until now as an independent 
source of large earthquakes, is thought to rupture only in combina-
tion with the CON/PAC boundary1,2. This assumption could lead 
to a misrepresentation of the seismic risk to the Tokyo Region. By 
assessing each of the three plate boundaries separately, it is possible 
to determine if, and at what minimum magnitude, each boundary 
may cause unusually large tsunami inundation along coastlines of 
the Tokyo Region.

Seismic risk associated with Tokyo’s triple junction
Relative to the triple junction boundary located offshore of the 
Tokyo Region3, there is an extensive history of earthquakes that 
originate from the CON/PHS and CON/PAC plate boundaries 
(Supplementary Fig.  1)4,5. CON/PHS boundary earthquakes have 
produced coseismically uplifted marine terraces along the south-
ern tip of the Boso Peninsula near Tokyo, which are archived in a 
detailed 7,200-year record of past earthquakes4. The 2011 earth-
quake ruptured the northern and middle parts of the Japan Trench, 
and marked the largest rupture area (~600 km in length) of any 
known earthquake that previously originated from the CON/PAC 

plate boundary (Fig. 1e)6,7. Although unprecedented in size of rup-
ture area, the 2011 earthquake tapered off well short of the triple 
junction8 (Fig. 1e). Taking into consideration modelling and recently 
documented geological evidence, a repeat of a M 8–9 class earth-
quake along the CON/PAC plate boundary is not expected to occur 
for another ~550 to 1,100 years5,9,10. However, great uncertainty 
surrounds the seismic potential for the area surrounding the triple 
junction, including the PHS/PAC boundary, in the Tokyo Region7,11.

Notable tsunamis that impacted the Tokyo Region in historical 
times include those on 31 December 1703 and 4 November 1677 
ce. The 1703 ce Genroku earthquake and tsunami originated from 
at least the western part of the CON/PHS boundary (Fig.  1f and 
Supplementary Fig.  1) and produced widespread ground shak-
ing12. The proximity of the rupture area to the Boso Peninsula 
produced ~6 m of localized uplift4. Along the eastern side of the 
Boso Peninsula, a subsequent tsunami ran inland ~2 km (ref. 13). By 
contrast, the Empo earthquake of 1677 ce, the only known earth-
quake to have originated from a rupture that spans the CON/PAC 
and PHS/PAC plate boundaries1,2,14, produced no uplift but gener-
ated a tsunami that inundated coastlines between southern Tohoku 
and the Boso Peninsula (Fig.  1f). Historical documents describe 
limited ground shaking on the Boso Peninsula and neighbouring 
Edo area (which corresponds to the area of modern-day Tokyo), 
but widespread damage associated with a tsunami several metres 
high12. Rupture models of this earthquake, constrained by histori-
cal records, do not account for the geometry of the triple junction. 
Although the models recognize PAC as the lower subducting plate, 
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they do not differentiate between the two overriding plates, which 
hinders the assessment of the PHS/PAC boundary as a potential 
earthquake source1,2,14.

Geological evidence for an unusually large tsunami
In the absence of instrumental or historical evidence of a third 
earthquake source, the PHS/PAC boundary, the geology along the 
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Kujukuri coastline, about 50 km east of Tokyo (Fig. 1e) was investi-
gated. Indeed, the importance of using geological records in under-
standing a region’s seismic risk was underlined when palaeoseismic 

evidence from Sendai revealed events in 869 and 1454 ce that 
could have forecast the severity of the Tohoku tsunami in 20115,10.  
The Kujukuri coastline is characterized by a series of parallel and 
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subparallel sandy beach ridges and swales that document a history 
of prograding shorelines over the last 5,500 years15,16 (Fig. 2a). Swales 
between beach ridges previously produced detailed geological 
records of palaeotsunamis on the coastlines of Sumatra17, Thailand18 
and Sendai5 from the identification of anomalous sandy sediment 
that is incorporated into the coastal sedimentary record5,18.

Two sand sheets buried beneath rice paddies were mapped at 142 
locations along the Kujukuri coastline (Fig. 1a). At 47 of the inves-
tigated locations, two anomalous sands were traced in sedimen-
tary sequences that spanned ~1,000 years. The chronology of the 
sedimentary sequences was constrained using 48 radiocarbon dates 
from freshwater peats under- and overlying the sands (Fig. 2 and 
Supplementary Tables 1 and 3). From young to old the sand depos-
its are labelled A (900–1700 ce) and B (800–1300 ce) (Extended 
Data Figs. 1–3 and Supplementary Tables 3–4). Sand A is found in 
most locations and extends up to 4 km inland of the modern shore-
line. Synchronous traces of sand B extend up to 3.5 km inland, but 
are only found in central and southern Kujukuri (Extended Data 
Figs. 1–3). Sedimentary structures and palaeoecology indicate that 
sands A and B were deposited during high-energy marine inunda-
tion events. The sand layers range in thickness from 5 to 35 cm, 
have features consistent with tsunami deposits, such as a distinct 
erosional base, rip-up clasts, pebbles, normal grading and a mud 
drape, and are preserved along multiple sections of the 50-km-long 
stretch of coastline (Fig. 2). Marine foraminifera are present within 
the sand layers but not in the surrounding peat, mud or basal sand 
layers (Fig. 2e and Supplementary Table 2).

Possible historical earthquake sources for sand A include events 
in 1703 ce (CON/PHS earthquake) and 1677 ce (CON/PAC + PHS/
PAC boundaries rupturing simultaneously), as well as an earlier 
undocumented event that is evidenced by sandy deposits at Juo 
(Fig.  1e,f)5. Sand B represents a previously undocumented event, 
falling within a time period for which Japanese earthquake historians 
have identified as having sparse written accounts19 (Fig. 1f). The tim-
ing of sand B (~1,000 years ago) does not overlap with any instances 
of uplifted terraces along the Boso Peninsula (age discrepancy  

on the order of 700 to 1,200 years20), eliminating the western part 
of the CON/PHS plate boundary as the tsunami source for sand B. 
Given the uncertainty surrounding the subduction zone respon-
sible for sand A (that is, two or more potential sources), modelling 
efforts were focused on sand B because its age and distribution may 
be explained by a previously unconsidered earthquake source along 
the PHS/PAC plate boundary.

Simulation models for the tsunami of 1,000 years ago
To resolve which boundaries have the potential to explain the inun-
dation required to deposit sand B at Kujukuri, plausible minimum 
ruptures for 11 hypothetical fault models that involve earthquakes 
along the CON/PHS (models 1–4), CON/PAC (models 5–8), PHS/
PAC (models 9–10) and CON/PAC and PHS/PAC (model 11, 
a combination of models 5 and 10) plate boundaries were used 
(Supplementary Fig.  2). Rather than reconstructing the specific 
earthquake (that is, rupture area and amount of slip) that generated 
the tsunami responsible for depositing sand B, minimum-slip rup-
ture models were used to resolve which of the three plate boundar-
ies is the most plausible candidate to have produced the tsunami 
inundation of 1,000 years ago (Table 1).

The palaeoshoreline position and height of the coastal dunes at 
the time of sand B’s deposition were estimated using the average 
rate of shoreline progradation16 and the height of the modern dunes. 
Multiple-slip scenarios for each fault plane were tested to deter-
mine the minimum earthquake magnitude along each of the three 
boundaries needed to explain the distribution of sand B (Table 1 and 
Supplementary Table 5). The models show that ruptures with less 
than 20 and 25 m of slip that occur on the CON/PHS and CON/PAC 
plate boundaries, respectively, are insufficient to generate tsunami 
inundation from the palaeoshoreline that would reach the landward 
limit of sand B (Supplementary Fig. 2). For example, model 7, based 
on a hypothetical plate boundary earthquake that occurs with 20 m 
slip along the CON/PAC plate boundary of the Japan Trench, pro-
duced inundation at Kujukuri that fell short of explaining the distri-
bution of sand B at the sites we examined.

The minimum-slip scenarios that explain the distribution of 
sand B along the recognized CON/PHS and CON/PAC boundar-
ies are models 3, 4 and 8. These modelled scenarios involve earth-
quakes with a large uniform slip in excess of 20 m. Given the wealth 
of historical and geological records that document CON/PHS and 
CON/PAC ruptures, it is not surprising that increasing the mag-
nitude, and therefore slip, of CON/PHS and CON/PAC hypotheti-
cal ruptures ultimately results in widespread tsunami inundation 
along the Boso Peninsula. What is surprising, however, are mod-
els 10 and 11 with rupture areas that involve only 10 m of uniform 
slip along a previously unconsidered earthquake source. Model 10, 
the minimum rupture needed to explain the distribution of sand B, 
involves a Mw 8.5 earthquake that ruptures along the unconsidered 
PHS/PAC boundary. Model 11, a higher magnitude earthquake (Mw 
8.7), which involves the combination of models 5 (CON/PAC) and 
10 (PHS/PAC), also generated sufficient inundation. This scenario, 
similar to the suggested model of the 1677 ce earthquake1,2,14, is 
speculative due to the lack of corroborating geological evidence in 
the southern Tohoku region, but provides compelling evidence for 
a PHS/PAC rupture that generates unusually large tsunami inunda-
tion along the Boso Peninsula. Geological evidence for the ~1.4 m 
of coseismic subsidence (model 11 in Supplementary Figure  2) 
predicted by the model was not detected in the study area due its 
distance from the shoreline. However, evidence for coseismic sub-
sidence may be found in marshy areas closer to the shoreline, where 
abrupt changes in sea level can be detected by locating saltmarsh 
peat abruptly buried beneath tidal-to-subtidal sediments21. On the 
contrary, the minimal slip associated with lower magnitude ruptures 
(model 9) along the PHS/PAC plate boundary results in a smaller 
net vertical subsidence (~0.7 m) along the Kujukuri coast, which 

Table 1 | Modelled scenarios, including hypothetical (models 
1–11) and historical (models 12 and 13) earthquakes

Plate boundary Modelled scenario

CON/PHS Model 1 Model 2 Model 3 Model 4

Slip, 10 m Slip, 15 m Slip, 20 m Slip, 25 m

Mw 8.4 Mw 8.5 Mw 8.6 Mw 8.6

CON/PAC Model 5 Model 6 Model 7 Model 8

Slip, 10 m Slip, 15 m Slip, 20 m Slip, 25 m

Mw 8.5 Mw 8.7 Mw 8.7 Mw 8.8

PHS/PAC Model 9 Model 10 – –

Slip, 5 m Slip, 10 m

Mw 8.3 Mw 8.5

PHS/
PAC + CON/
PAC

Model 11 – – –

Slip, 10 m

Mw 8.7

Jogan model 
(Namegaya 
and Satake, 
2014)23

Model 12 – – –

Slip, 12 m

Mw 8.6

2011 Tohoku 
model (Fujii 
et al., 2011)24

Model 13 – – –

Variable slip

Mw 9.0

Model numbers in bold italics indicate scenarios that inundate sand B at the sampled field sites.
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mitigates inundation (Supplementary Fig. 2). Given the 1,000 year 
age range of sand B, the possibility exists that the Jogan rupture area 
(CON/PAC boundary offshore of the Sendai region) was potentially 
several hundred kilometres greater than previously thought and 
may have extended through the triple junction and generated wide-
spread inundation that would have flooded extensive coastal areas 
from Tohoku to areas just east of Tokyo.

Is the Tokyo Region at risk of an earthquake and tsunami from a 
previously unconsidered source? As a precaution based on known 
recurrence intervals for the Japan Trench and Sagami Trough, seis-
mic hazard maps of Japan identify the CON/PHS and CON/PAC 
plate boundaries as sources of large earthquakes, but omit the pos-
sibility that the PHS/PAC boundary could rupture independently 
of the other plate boundaries. Although seismic observations that 
span the past few decades capture small slip rates and no evidence 
for large earthquakes along the PHS/PAC boundary3,22, these find-
ings, based on a limited timeframe, do not deny the possibility that 
a larger rupture occurred in the past. Geological evidence for a tsu-
nami that occurred about 1,000 years ago may be attributed to one 
of three plate boundaries that constitute Tokyo’s triple junction, as 
five of the eleven modelled scenarios suggest a tsunami source in 
the area offshore of the Boso Peninsula. Among these are models 10 
and 11, ruptures that involve the previously unconsidered PHS/PAC 
boundary. These inferred rupture areas add additional and poten-
tially dangerous sources for earthquakes and tsunamis that threaten 
the Tokyo Region.
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Methods
Sample collection and elevation survey. At central Kujukuri (Hasunuma) we 
conducted a detailed and extensive topographical survey. In northern (Sosa) and 
southern (Ichinomiya) Kujukuri we surveyed core locations (Supplementary 
Table 1 and Extended Data Figs. 1–3). Gouge coring documented stratigraphic 
changes at intervals no more than 50 m apart. Grain size, sedimentary structure, 
contacts, unit thickness and lateral and vertical facies changes were documented for 
correlation between the sites. After the expanded mapping of stratigraphy at each 
site, we selected the best locations to core for the detailed sampling of sedimentary 
layers for microfossil and radiocarbon analyses. To minimize the compaction and 
contamination of sediments during coring we used a 15 cm × 3 cm geoslicer to 
retrieve 1–3 m cores. One sliced sample at each site in Sosa and Ichinomiya, and six 
sliced samples at Hasunuma, were collected. The slices were subsampled at 1–2 cm 
for microfossil and radiocarbon analyses. Accurate measurements of the inland 
extent and height above sea level of sands A and B were determined by measuring 
the position of all the cores relative to Tokyo Peil (the mean sea level in Tokyo Bay) 
using a total station and real time kinematic satellite navigation system.

Microfossil analysis. Samples from cores retrieved from Sosa, Hasunuma and 
Ichinomiya were examined for foraminiferal (marine protist) and testate amoebae 
(freshwater protist) taxa. Approximately 5 cm3 of sediment was sampled from 
targeted intervals within three cores31. Samples were wet sieved at >63 µm and 
examined in an aqueous medium under a binocular microscope. The total number 
of foraminifera present within 10 cm3 of sediment was counted and is reported as 
the total concentration in Supplementary Table 2.

Chronology. For radiocarbon analysis, plant macrofossils and charcoal fragments 
were selected using a binocular microscope. The samples were first rinsed with 
distilled water to remove soil detritus and rootlets before analysis by accelerator 
mass spectrometry at the Beta Analytic Radiocarbon Laboratory in Florida. For 
calibration of the radiocarbon ages, we first used the radiocarbon-calibration 
program OxCal 4.332–34. Age ranges (two standard deviations) were calculated using 
the calibration data of IntCal13 and Marine1335 (Supplementary Tables 3 and 4). 
We used Bchron36,37 and a bespoke Monte Carlo rejection sampling approach to 
calculate the timing of the deposition of sands A and B by relating them to their 
associated boundary radiocarbon ages (Supplementary Figs. 4 and 5).

A deposition-timing model was used on the same set of radiocarbon dates from 
cores obtained from rice paddies in Hasunuma and Ichinomiya. This Bayesian 
model calibrates all the radiocarbon dates and uses them as limiting constraints 
to estimate the ages of sands A and B (Supplementary Fig. 5). Derivation of the 
code is similar to that of Rubin et al.38 and the code itself is available at https://
github.com/andrewcparnell/sand_ages_pilarczyk. The model is fitted via rejection 
sampling39, whereby a large number (50,000) of plausible ages are created, some 
of which are rejected due to the constraints of the radiocarbon dates and the law 
of superposition. The final set of accepted ages (24,999 in our model) can then be 
used as the posterior probability distribution of the ages of sands A and B. Highest 
density range estimates of 68.2 and 95.4% were created using the hdrcde package40. 
Plots were created using ggplot241.

Tsunami simulation modelling. We developed ten hypothetical fault models 
that involved earthquakes along the CON/PHS plate boundary (models 1–4), 
the CON/PAC plate boundary (models 5–8) and the PHS/PAC plate boundary 
(models 9 and 10) to assess whether they explain the distribution of sand B. An 
11th hypothetical fault model (model 11) that involved both the PHS/PAC and 
CON/PAC plate boundaries rupturing at the same time was also used. We also 
tested published models for two historical and recent earthquakes: 869 ce Jogan 
(model 12) and 2011 ce Tohoku (model 13). Models 12 and 13 were run using 
the position of the Kujukuri shoreline of 1,000 years ago, the time when sand B 
was deposited.

For tsunami simulation development we: (1) computed vertical seafloor 
displacements from fault parameters (Supplementary Table 5) using Okada’s 
equations42, (2) solved non-linear shallow-water equations (linear equations in 
the coarsest grid area) in Cartesian coordinate systems based on Goto et al.43 and 
(3) utilized a Manning’s roughness coefficient of 0.03 m−1/3 s–1. The rake angle 
was calculated from the relationship between the strike angle of the fault and the 
direction of the relative motion of the plates according to the model of Sella et al.44. 
Details for each of these parameters are summarized in Supplementary Table 5. 
Detailed and precise models of tsunami inundation at Kujukuri were obtained 
using a minimum grid spacing of 25 m for bathymetric (modified from J-EGG500 
provided by the Hydrographic and Oceanographic Department, Japan Coast 
Guard/Japan Oceanographic Data Center) and topographic datasets. The first step 
of model development involved constructing a grid based on a detailed elevation–
depth profile of the Kujukuri shelf and coastline using a combination of air photos, 
topographic maps and a 5 m grid (a 10 m grid was used in a small section outside 
of the inundation zone) digital elevation model from the Geospatial Information 
Authority of Japan. The second step involved constraining the age of each tsunami 
associated with sands A and B, and using the palaeotopographical reconstructions 
of Tamura et al.45 to estimate the position of the Kujukuri coastline and height of 
the barrier at the time sand B was deposited. The palaeoshoreline of 1,000 years 

ago is estimated to be 1 km inland of the current shoreline45 and it is assumed that 
the height of the palaeobarrier is the same as that of the present day dunes.

Our simulations spanned a time period of 6 h from the time of the modelled 
rupture to account for all the possible tsunami propagations. The modelled 
inundations for each scenario (Supplementary Fig. 2) were compared with the 
inland extent of each candidate tsunami deposit to determine which, if any, 
simulation explains their occurrence.

The free software package, Generic Mapping Tools (GMT)46, was used to draw 
the index maps in Figs. 1 and 2, and Extended Data Figs. 1–3. GEBCO 2020 was 
used for the bathymetric data in Fig. 1e and Supplementary Figs. 1 and 247.

Data availability
All data integral to the stated conclusions are presented within the paper, extended 
data and Supplementary Information. Data tables can be accessed at https://doi.
org/10.5281/zenodo.5056915.

Code availability
Code for the Bayesian model can be accessed at https://github.com/
andrewcparnell/sand_ages_pilarczyk.
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Extended Data Fig. 1 | Evidence for large-scale tsunami inundation at Sosa (north Kujukuri). a, Modelled inundation at Kujukuri relative to the position of 
sand B. Index map, showing geomorphology, position of tsunami deposits (sand B), and inundation area estimated from model 10 for all three field sites in 
Sosa, Hasunuma, and Ichinomiya (Supplementary Fig. 2). b, Modelled inundation at Sosa (north Kujukuri) relative to the position of sand B. Core locations 
at Sosa relative to inundation resulting from models 1 (red line), 5 (yellow shaded area), 9 (white shaded area), and 10 (sky blue shaded area). Sky blue 
areas bounded by a dashed line represent the location of past reservoirs or ponds that are evident in historical maps from the Meiji era (c. 1868–1922 CE). 
Photograph from the Geospatial Information Authority of Japan (GSI; https://maps.gsi.go.jp/development/ichiran.html). c, Stratigraphic evidence for a 
tsunami at Sosa (north Kujukuri). Photograph and stratigraphic log of core shown in b.
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Extended Data Fig. 2 | Evidence for large-scale tsunami inundation at Hasunuma (central Kujukuri). a, Modelled inundation at Kujukuri relative to the 
position of sand B. Index map, showing geomorphology, position of tsunami deposits (sand B), and inundation area estimated from model 10 for all three 
field sites in Sosa, Hasunuma, and Ichinomiya (Supplementary Fig. 2). b, Modelled inundation at Hasunuma (central Kujukuri) relative to the position of 
sand B. Core locations at Hasunuma relative to inundation resulting from models 1 (red line), 5 (yellow shaded area), 9 (white shaded area), and 10 (sky 
blue shaded area). Sky blue areas bounded by a dashed line represent the location of past reservoirs or ponds that are evident in historical maps from  
the Meiji era (c. 1868–1922 CE). Photograph from Geospatial Information Authority of Japan (GSI; https://maps.gsi.go.jp/development/ichiran.html).  
c–f Stratigraphic evidence for two tsunamis at Hasunuma (central Kujukuri). Detailed cross section of stratigraphy from transect shown in b. g-h, 
Stratigraphic evidence for two tsunamis at Hasunuma (central Kujukuri). Photograph and stratigraphic log of core shown in c. i, Stratigraphic evidence for 
two tsunamis at Hasunuma (central Kujukuri). Photograph, stratigraphic log, and CT image of core shown in b.
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Extended Data Fig. 3 | Evidence for large-scale tsunami inundation at Ichinomiya (south Kujukuri). a, Modelled inundation at Kujukuri relative to the 
position of sand B. Index map, showing geomorphology, position of tsunami deposits (sand B), and inundation area estimated from model 10 for all three 
field sites in Sosa, Hasunuma, and Ichinomiya (Supplementary Fig. 2). b, Modelled inundation at Ichinomiya (south Kujukuri) relative to the position of 
sand B. Core locations at Ichinomiya relative to inundation resulting from models 1 (red line), 5 (yellow shaded area), 9 (white shaded area), and 10 (sky 
blue shaded area). Sky blue areas bounded by a dashed line represent the location of past reservoirs or ponds that are evident in historical maps from the 
Meiji era (c. 1868–1922 CE). Photograph from Geospatial Information Authority of Japan (GSI; https://maps.gsi.go.jp/development/ichiran.html).  
c, Stratigraphic evidence for two tsunamis at Ichinomiya (south Kujukuri). Detailed cross section of stratigraphy from transect shown in b. d, Stratigraphic 
evidence for up to three tsunamis at Ichinomiya (south Kujukuri). Photograph and stratigraphic log of core shown in b, c.
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