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Identifying the Greatest Earthquakes of the Past 2000
Years at the Nehalem River Estuary, Northern Oregon
Coast, USA

Alan R. Nelson®, Andrea D. Hawkes', Yuki Sawai*, Simon E. Engelhart$, Rob Witterl,
Wendy C. Grant-Walter, Lee-Ann Bradley’, Tina Dura™, Niamh Cahill'™ and Ben
Horton**55

We infer a history of three great megathrust earthquakes during the past 2000 years at the Nehalem
River estuary based on the lateral extent of sharp (<3 mm) peat-mud stratigraphic contacts in cores and
outcrops, coseismic subsidence as interpreted from fossil diatom assemblages and reconstructed with
foraminiferal assemblages using a Bayesian transfer function, and regional correlation of “C-modeled
ages for the times of subsidence. A subsidence contact from 1700 CE (contact A), sometimes overlain by
tsunami-deposited sand, can be traced over distances of 7 km. Contacts B and D, which record subsid-
ence during two earlier megathrust earthquakes, are much less extensive but are traced across a 700-m
by 270-m tidal marsh. Although some other Cascadia studies report evidence for an earthquake between
contacts B and D, our lack of extensive evidence for such an earthquake may result from the complexities
of preserving identifiable evidence of it in the rapidly shifting shoreline environments of the lower river
and bay. Ages (95% intervals) and subsidence for contacts are: A, 1700 CE (1.1 = 0.5 m); B, 942-764 cal
aBP 0.7+ 04 mand 1.0 m + 0.4 m); and D, 1568-1361 cal a BP (1.0 m £ 0.4 m). Comparisons of contact
subsidence and the degree of overlap of their modeled ages with ages for other Cascadia sites are con-
sistent with megathrust ruptures many hundreds of kilometers long. But these data cannot conclusively
distinguish among different types or lengths of ruptures recorded by the three great earthquake contacts
at the Nehalem River estuary.

Keywords: paleoseismology; Cascadia subduction zone; tidal foraminifera and diatoms; coseismic subsid-
ence; Bayesian transfer function; sea-level changes; salt-marsh stratigraphy; earthquake hazards

Introduction

Although coastal wetlands of the Cascadia subduction
zone, from British Columbia to northern California
(Figure 1), host one of the longest and best-preserved
onshore records of great (magnitude 8-9) megathrust
earthquakes and accompanying tsunamis (e.g., Atwater
1992; Nelson, Shennan & Long 1996; Clague 1997; Witter,
Kelsey & Hemphill-Haley 2003; Dura et al. 2016a), debate
continues as to the rupture lengths, locations, magnitudes,
and timing of Cascadia’s megathrust earthquakes (Witter
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et al. 2012; Atwater et al. 2014; Goldfinger et al. 2016;
Hutchinson and Clague 2017). Stratigraphic sequences
beneath the coastal wetlands show sharp peat-mud (mud
sharply overlying peat) contacts formed by sudden rela-
tive sea-level (RSL) rise due to coseismic subsidence dur-
ing the earthquakes (Atwater 1987; Nelson, Shennan &
Long 1996; Milker et al. 2016). The 4-7 sharp peat-mud
contacts with 2—3 overlying tsunamis deposits in 3500
years attributed to subsidence along the coasts of north-
ern Oregon and southern Washington, and 12 sharp con-
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tacts and 3—11 tsunami deposits in central and southern
Oregon from the past 6300 years, suggest differences in
great earthquake history that imply differences in the type
and frequency of great earthquakes in different parts of
the subduction zone (Nelson 1992a; Nelson and Personius
1996; Kelsey, Witter & Hemphill-Haley 2002; Kelsey et
al. 2005; Nelson, Kelsey & Witter 2006; Schlichting and
Peterson 2006; Witter et al. 2009; Witter et al. 2013). Off-
shore, Goldfinger et al. (2012, 2016) interpret a 10,000
year record of turbidites in marine cores as recording
strong shaking from great earthquakes (Figure 1), with a
frequency of about 500 years in northern Cascadia versus
a frequency of 200-300 years off southern Oregon and
northern California.

The north-to-south contrast in numbers and recur-
rence of great megathrust earthquakes in land and
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marine records suggests differences in earthquake his-
tory critical to the assessment of earthquake hazard in
central western North America, and of tsunami hazard
assessment in the Pacific basin. But studies of earth-
quake or tsunami stratigraphy at many sites at Cascadia
are reconnaissance investigations completed 15-30 years
ago; few address thresholds for creating and preserving
stratigraphic evidence of earthquakes and their tsunamis
(e.g., Nelson, Jennings & Kashima 1996; Atwater and
Hemphill-Haley 1997; Shennan et al. 1998; Hutchinson et
al. 2000; Nelson, Kelsey & Witter 2006; Graehl et al. 2014;
Shennan, Garrett & Barlow 2016); and even fewer quanti-
tatively assess deformation during individual earthquakes
(e.g., Nelson et al. 2008; Hawkes et al. 2011; Wang et al.
2013; Kemp et al. 2018; Padgett 2019), or use rigorous
sample evaluation criteria with statistically based models
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Figure 1: Physiography and major features of the Cascadia subduction zone showing the location of the Nehalem River
estuary on the northern Oregon coast (base map data source: GEBCO Compilation Group (2019) GEBCO 2019 Grid,
doi:10.5285/836f016a-33be-6ddc-e053-6c86abc0788e). The deformation front of the subduction-zone megathrust
fault on the ocean floor (red barbed line) is near the bathymetric boundary between the continental slope and abys-
sal plain. Dots mark estuaries, lagoons, or lakes with evidence for coastal subsidence, tsunamis, and/or turbidites

accompanying subduction-zone earthquakes.
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of precise ages to reconstruct earthquake chronology (e.g.,
Atwater et al. 2004; Witter et al. 2012; Milker et al. 2016;
Hutchinson and Clague 2017). Although the investigation
summarized here reconstructs the earthquake history of
only a single estuary, and so cannot address north-south
differences, only through a series of such investigations
that employ the above thorough stratigraphic methods
at widely spaced sites can we hope to answer questions
about north-south differences in earthquake history at
Cascadia.

In this paper, we compile and interpret extensive but
unintegrated stratigraphic data—collected intermittently
over three decades—to reconstruct earthquake history
for a key site in the northern Oregon part of the central
Cascadia subduction zone. The Nehalem River estuary lies
between coastal wetland sites in southwest Washington
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with thick-mud, thin-peat stratigraphy and fossils suggest-
ing >1-1.5 m of sudden subsidence during great earth-
quakes (e.g., Hemphill-Haley 1995; Shennan et al. 1996;
Atwater and Hemphill-Haley 1997; Kemp et al. 2018), and
estuarine sites to the south where thin-mud, thick-peat
stratigraphy and microfossil reconstructions suggest a
history of substantially less earthquake subsidence (e.g.,
Nelson 1992; Nelson and Personius 1996; Shennan et al.
1998; Nelson et al. 2008; Wang et al. 2013; Kemp et al.
2018; Padgett 2019) (Figures 1 and 2). Based on the initial
work of Grant (unpublished 1994 report in Supplementary
Files) describing evidence for four megathrust earth-
quakes in river outcrops, we hoped that Nehalem River
estuary stratigraphy would help show how these apparent
differences in deformation history transition from north
to south. And, by developing more precise age models for
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Figure 2: Map of lower Nehalem River valley showing physiographic features, place names, and locations of reconnais-
sance examinations of cores and outcrops (numbered for reference in text; UTM Zone 10T E coordinates in meters).
Cores at locations 1-4 were described by Grant and McLaren (1987), which are close to four archeological sites whose
stratigraphy was summarized by Woodward, White & Cummings (1990) and Losey (2002). Minor and Grant (1996)
described stratigraphy at their upstream (location 16) and downstream (East Bank outcrop) sites. Figure 3 shows loca-
tions of 192 other cores.
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the times of earthquakes at the Nehalem River estuary, we
sought to test inferences of previous studies about four
megathrust earthquake ruptures extending from south-
western Washington into central Oregon in the past 2000
years.

However, in this estuarine lowland with an abundant
sediment supply, we found conclusive evidence—wide-
spread, distinct stratigraphic contacts marking substantial
coseismic subsidence—for only three megathrust earth-
quakes in the past 2000 years. Foraminiferal and diatom
microfossil analyses help us identify significant environ-
mental change across the peat-mud (mud-over-peat) sub-
sidence contacts. Using new Bayesian statistical methods
with the foraminiferal data we measure 0.7 to 1.1 m of
subsidence during the three earthquakes. Age models of
the results of our C ages on plant macrofossils, although
they date contacts more precisely, demonstrate ongoing
uncertainties in correlating lithologic and microfossil evi-
dence of earthquakes, even over hundreds of meters at the
same site, as well as among sites hundreds of kilometers
apart along the subduction zone (e.g., Shennan, Garrett &
Barlow 2016). Next, we summarize our approach to evalu-
ating potential earthquake contacts prior to discussing
the stratigraphy and correlation of contacts.

Approach and Methods

Mapping potential earthquake contacts

In outcrops and cores of the lower Nehalem River estu-
ary, we followed many previous studies of Cascadia
earthquake stratigraphy at tidal sites by mapping sharp
(defined as <3 mm to <10 mm, depending on the study) to
abrupt (<1 mm) peat-mud or peat-sand contacts between
the peaty sediment of marshes or swamps (O or A soil
horizons) overlain by muddy or sandy tidal-flat sediment,
which potentially mark sudden coastal subsidence dur-
ing great earthquakes commonly followed by tsunamis.
Successions of similar mud-peat couplets (mud grad-
ing upward into peaty mud and peat) with sharp upper
contacts are the stratigraphic basis for interpretations
of repeated sudden subsidence of wetlands during great
Cascadia earthquakes at tens of tidal sites along the sub-
duction zone (e.g., Atwater 1992; Nelson 1992b; Darienzo,
Peterson & Clough 1994; Nelson, Jennings & Kashima
1996; Schlichting and Peterson 2006; Valentine et al.
2012; Graehl et al 2014; Milker et al. 2016), and on other
subduction-zone coasts (e.g., Briggs et al. 2014; Shennan
et al. 2014; Dura et al. 2016a). In evaluating earthquake
evidence at Nehalem we apply the following stratigraphic
criteria of Nelson, Shennan & Long (1996), as modified by
and best articulated by Shennan, Garrett & Barlow (2016):
(1) lateral extent of sharp peat-mud contacts; (2) sudden-
ness of submergence; (3) amount of submergence, quan-
tified with errors; (4) synchroneity of submergence based
on statistical age modelling; (5) spatial pattern of submer-
gence; and 6) additional evidence, such as of a tsunami
concurrent with submergence.

In our mapping of evidence for great Cascadia earth-
quakes and accompanying tsunamis we compiled and
interpreted data from field investigations decades apart
(primarily in 1987-1992 and 2006-2010) in the lower
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valley of the Nehalem River and adjacent areas of Nehalem
Bay (Figure 2). Grant and McLaren (1987), Grant (1989),
and Grant (unpublished 1994 report in Supplementary
Files) described shallow (<2 m depth) stratigraphy in
about 120 gouge (2.5 cm diameter) cores and 6 outcrops
near the river and along the northern parts of the bay
(Figures 2 and 3). Stratigraphic sequences with four sharp
peat-mud contacts at two outcrops (mapped by Grant at
the tops of organic-rich, wetland soil O or A horizons) were
described in greater detail and dated with 29 radiocarbon
ages (Grant et al. 1989; Grant, unpublished 1994 report in
Supplementary Files; Minor and Grant 1996; Table 1). In
2006, we identified the three youngest peat-mud contacts
in the East Bank outcrop (Figures 2 and 3; “downstream”
site of Grant, unpublished 1994 report in Supplementary
Files; Table 1), but silty mud deposited against the out-
crop—perhaps a result of cessation of dredging the main
river channel—had reduced its (1991) height by >1 m.
Because the outcrop was longer and higher in 1991 than
in 2006, we adopted Grant's (unpublished 1994 report
in Supplementary Files, her Figure 7) mapping of the
four peat-mud contacts, labeling them A, B, C, and D
(Figures 4 and 5).

To obtain a more complete section of the East Bank out-
crop stratigraphy, in 2006 we took four 4-m-long vibra-
cores (70-mm diameter, labeled V1-V4) on the dike above
the outcrop 3—4 m from its eroded edge (Figure 4). Cores
were split, cleaned, and photographed the following day.
In the laboratory we described the lithostratigraphy of
core V1 and recorded its lithology with the locations of
microfossil and C samples on a color-corrected, photo
mosaic of the core (methods of Troels-Smith 1955, and
Nelson 2015). Although core V1 compacted 12% during
collection, we approximately corrected its contact depths
through correlations to adjacent less compacted gouge
cores (Figures 5, S1, and S2). Short sections of cores V3
and V4 spanning peat-mud contacts were saved only for
4C sampling.

Investigations in 2009 included reconnaissance exami-
nation of river outcrops; reconnaissance description of
cores in tidal marshes west of the river, along the northern
edge of Nehalem Bay, and in pastures north of Highway
101; further laboratory study of vibracores at the East
Bank outcrop; and description, correlation, and dating of
gouge and Russian (segments 50 cm long with 5-cm diam-
eter, D-shaped cross-sections) cores in Botts marsh east of
the East Bank outcrop (Figures 2, 3, 5, and S2). In 2018,
we dated and studied foraminifera across the lower four
of five peat-mud contacts in Russian core R5 from Botts
marsh. We used a Real Time Kinematic-Global Positioning
System (RTK-GPS) to measure core and sample elevations
using standard methods (described in the Supplementary
Files).

Dating earthquake contacts through “C-age modeling
Following Grant's (Grant et al. 1989; unpublished 1994
report in Supplementary Files) reasoning for dating mate-
rials above and below contacts, we used previous 'C ages
or selected new C samples based on our assessment of
how close the age of sample materials (either maximum
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e Core and sample locations of Grant (1987-1994)
e Core and sample locations (this paper)
® Location of cores shown on Fig. 5
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Figure 3: Map of areas of tidal marsh, meadow, and pasture in the lower Nehalem River valley where most of the
cores in this study were described. Black dots show locations of gouge cores and a few sampled outcrops of Grant
and McLaren (1987) and Grant (1989; unpublished 1994 report in Supplementary Files). Red dots show locations of
gouge cores and outcrops examined in this study (2006—2009). Red dots with blue rings show locations of cores (V1
and R5 labeled) selected for Figure 5 from west to east. Areas of marsh are taken from a 1979 U.S. Geological Survey
quadrangle map (Nehalem River, Oregon; 1:100k) and because of recent changes in the position of marshes and tidal
flats, cores taken in tidal marshes in 1987-2009 do not all fall on the depicted areas of marsh. Approximate edges of
marshes west of the river as surveyed by Gilbert (1875) are shown by green dashed lines. Locations of labeled cores in

Botts marsh are shown on imagery in Figure S2.

or minimum ages) were to the times when the four con-
tacts at the East Bank outcrop formed (Table 1). Previ-
ous ages included: 13 liquid-scintillation *C ages on Sitka
spruce (Picea stitchensis) stump roots, peat, rooted herb
(Triglochin maritima) rhizomes, and detrital sticks and
bark (Grant, unpublished 1994 report in Supplementary
Files, her Table 1); Nelson et al.'s (1995) eight accelerator
mass spectrometry (AMS) C ages and four high-precision

gas-proportional "C ages on rooted herbs and stumps at
contact A; two AMS ages on a fragment of a Native Ameri-
can basket at contact A, twelve AMS ages on plant macro-
fossils from cores V1-V4, and two AMS ages on needles
and a cone in forest litter beneath stumps exposed on the
present tidal flat (Table 1; Figures 4 and 5). To extend
correlations with contacts in the East Bank outcrop east-
ward across Botts marsh (Figures 2, 3, 5, S1, S2, and S3)
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Figure 4: Correlation of peat-mud contacts, mapped and inferred by Grant (1989; modified from Figure 7 in her
unpublished 1994 report in Supplementary Files) to mark the upper contacts of marsh O horizons suddenly subsided
during great earthquakes, relative to cores and samples from the East Bank outcrop. Vibracores (V1-V4) were
collected 3—4 m east of the top of the outcrop (Figure S2). Location, type, and interpretation of '“C ages in Table 1
are also shown. Two liquid-scintillation ages of Grant (Table 1 in unpublished 1994 report in Supplementary Files)
are on samples 55 m south of their position shown on the figure. The fragment of a Native American basket, found
by Atwater, Grant, and Nelson in 1991, is described by Connolly and Byram (1997). Core elevations measured relative
to tide levels (MTL, mean tide level; MHW, mean high water; MLW, mean low water; MHHW, mean higher high water)

with kinematic GPS (RTK) relative to NAV8S.

we selected plant macrofossils from Russian cores R5, R17,
and R24 for AMS *C dating and prepared them as for vibra-
core samples (methods of Kemp, Nelson & Horton 2013).
We used OxCal stratigraphic ordering software (methods
of Bronk Ramsey 2008, 2009) with the C ages to develop
age models for the times when peat-mud contacts formed
(models similar to those described by DuRoss et al. 2011,
and Nelson et al. 2014). Our series of age models begins
with outlier analyses (method of Bronk Ramsey 2009) of 1)
the 30 ages from the East Bank outcrop, and 2) the 25
ages from Botts marsh (Table 1; Figure 6; OxCal code for
selected models in Supplementary Files). For each of the
two series of models we then successively eliminated ages
that we interpret to be less accurate minimum or maxi-
mum estimates of the times contacts formed. For our final
age models, we selected only the closest maximum and
minimum ages for contacts (marked in bold on Table 1).
Where the two youngest maximum or oldest minimum
ages (as reported by laboratories) were within 40 'C years
of each other and met the criteria of Ward and Wilson
(1978) for being from the same population (0.05 confi-
dence level), we averaged ages (e.g., Bronk Ramsey 2015).
We base our interpretations of the closest maximum and
minimum ages (discussed for each contact below) on the

type of plant macrofossil, its orientation, degree of decay
and abrasion, host stratigraphic unit lithology, its strati-
graphic context relative to adjacent plant macrofossils
and to upper and lower units, and—most importantly—on
its calibrated "C age relative to the ages of samples above
and below it. As elsewhere in Cascadia coastal sequences
(e.g., Nelson 1992b; Nelson et al. 2006; Hutchinson and
Clague 2017), most of our ages are on detrital materials,
which are older than the times adjacent contacts formed.
The relative age of rhizomes (below ground stems) of low
and middle marsh herbs are more difficult to interpret
than ages on above-ground plant parts. Usually growth-
position rhizomes, especially those of Triglochin maritima
with the bases of its decay-resistant leaves still attached,
provide unambiguous minimum ages for underlying con-
tacts. Rarely, we infer that the rhizomes of plants younger
than contacts grew down into the peaty unit just below a
contact (sample 0S-144330, Table 1).

Microfossil-based assessments of environmental
change across earthquake contacts

Over the past two decades, the use of changes in fossil
foraminiferal and diatom assemblages to stratigraphically
identify great earthquakes at Cascadia has shifted from
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Figure 5: Simplified lithology, correlation of distinct contacts (dashed lines), and C ages (median of calibrated prob-
ability distribution rounded to century) in selected gouge and other cores (vibracore V1, Russian cores R5, R17, and
R24) between the East Bank outcrop and the east edge of Botts marsh (Figures 2, 3, and 4; core locations are high-
lighted on Figure S2; more detailed correlation of 20 cores in Figures S2 and S3). Upward and lateral changes in lithol-
ogy are considerably more subtle and variable than suggested by the simplified lithologies. Examples of the more
detailed field and laboratory descriptions used in interpreting and correlating cores are shown in Figures S1 and S3.
Table 1 lists data for radiocarbon ages. Core elevations measured relative to tide levels with kinematic GPS (RTK) rela-
tive to NAV88. Unit thicknesses in core V1 have been approximately corrected for compaction based on key contacts
in nearby gouge cores. Contact A is sharp and distinct in almost all cores. Contact B is distinct along the outcrop and
in cores in much of the northwestern and northeastern marsh, but its correlation is uncertain in the central marsh.
Level x and level z are too indistinct to be considered mappable contacts (discussed in the text). Contact C is mapped
along parts of the East Bank outcrop (Figure 4), but possible correlative contacts were found in only 5 cores in Botts
marsh. Contact D has been eroded in most cores near the river, but it is sharp and distinct in core R5 and in cores in
the central and northeastern marsh. Contact E can be correlated intermittently among two-thirds of the cores that
reach its depth in the central and eastern marsh.
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Figure 6: Radiocarbon-age probability distributions for contacts A, B, C, D, and E (and levels x and z; explained in text),
at the East Bank outcrop (blue) and(or) Botts marsh (green) determined with OxCal (Bronk Ramsey 2001, 2009). The
two distributions for contact A are averages for plants rooted in the peaty O soil horizon just below contact A at the
outcrop (Table 1; Figure 4), and inferred to have died about the time of the 1700 CE earthquake. Dated samples
consisted of rings 1-10 from each of three tree stumps and the leaf bases of eight herbs (Nelson et al. 1995). Other
distributions were determined with age models using maximum-limiting and minimum-limiting "C ages selected
from Table 1. Distributions calculated only with maximum-limiting ages are marked with white right-pointing arrows;

with a minimum limiting age with a left-pointing arrow.

using mostly qualitative and limited quantitative compari-
sons of assemblages to estimate amounts and rates of RSL
rise across peat-mud contacts (e.g., Nelson et al. 1996b,
1998; Atwater and Hemphill-Haley 1997; Shennan et al.
1998; Kelsey et al. 2002; Witter, Kelsey & Hemphill-Haley
2003; Hawkes et al. 2005; Graehl et al. 2014) to transfer
function methods that produce sample specific errors
(e.g., Guilbault, Clague & Lapointe 1995, 1996; Nelson et
al. 2008; Hawkes et al. 2011; Wang et al. 2013; Dura et al.
2016b; Milker et al. 2016; Shennan, Garrett & Barlow 2016;
Horton et al. 2017). Transfer functions use the relations
among modern assemblages and their respective eleva-
tions in modern tidal environments as analogs to hindcast
past tidal elevations from fossil assemblages in strati-
graphic sequences (Kemp and Telford 2015). The most
recent development are Bayesian foraminiferal transfer
functions (Cahill et al. 2016; Kemp et al. 2018; Hong 2019;
Padgett 2019) that, unlike previous non-Bayesian transfer
functions, allow species response curves to deviate from a
pre-defined form (commonly unimodal) and may incorpo-
rate prior information about sampled sediment (i.e., stra-
tigraphy, lithology, paleoecologic information from other
types of fossils) to help constrain estimates of past RSL
change.

Foraminiferal analysis

At the Nehalem River estuary, a new Bayesian foraminife-
ral transfer function was used to reconstruct the amount
of rapid submergence (inferred to be the result of coseis-
mic subsidence) across potential earthquake contacts
(Figures 4, 7, and S4; Table S1). Kemp et al. (2018) used
the original foraminiferal data of Hawkes et al. (2011; 22

samples) with their new Bayesian transfer function to
estimate the amount of subsidence marked by contact A
in vibracore core V1 at the East Bank outcrop. Kemp et al.
(2018) developed their Bayesian transfer function using
a modern dataset of 393 samples and elevations from 19
sites between southern California and Vancouver Island.
The much larger dataset than used to develop previ-
ous, non-Bayesian functions (e.g., Hawkes et al. 2010;
Engelhart et al. 2013a, 2013b; Milker et al. 2015b, 2016)
includes modern assemblages that are better analogs
for fossil assemblages than those of earlier studies (e.g.,
Shennan, Garrett & Barlow 2016; Kemp et al. 2018). With
the new foraminiferal data reported here (73 samples),
we used the same function (informed West Coast func-
tion of Kemp et al. 2018) to estimate subsidence across
contact B in core V1, and contacts B and D in Russian
core R5 from Botts marsh. Insufficient foraminifera or
inconsistent results prevented us from estimating sub-
sidence for three other potential earthquake contacts in
cores V1 and R5 (Figure S4). Based on the partially con-
torted sediment of widely varying lithology in overlap-
ping core segments, the peat-mud contacts in Russian
core R24 at the east edge of Botts Marsh (Figures 5, S1,
S2, and S3) are too disturbed to infer paleoenvironmen-
tal change across them, and so we did not sample core
R24 for microfossils.

All 95 samples of foraminifera (Figures 7 and S4; Table
S1) were refrigerated, prepared, and counted using stand-
ard methods (e.g., Scott and Hermelin 1993; de Rijk 1995;
Kemp et al. 2009; Engelhart et al. 2013b; Milker et al.
2015a). Ten species of foraminifera were identified using
the taxonomic illustrations and descriptions in Horton



Nelson et al: Identifying the Greatest Earthquakes of the Past 2000 Years at the

Nehalem River Estuary, Northern Oregon Coast, USA

and Edwards (2006), Hawkes et al. (2010), Wright, Edwards
& van de Plassche (2011), and Milker et al. (2015a).

To make our transfer function reconstructions of RSL
change across contacts consistent those of Kemp et al.
(2018), we followed their procedures. We standardize
our taxonomy, which differs slightly from the taxonomy
for contact A of Hawkes et al. (2011; Table S1) by renam-
ing Trochamminita irregualris to Trochamminita spp.,
and combining all species (maniliensis and wilberti) of
Haplophragmoides and calcareous species into single
groups, respectively. Similarly, we express foraminiferal
assemblages as counts (Table S1) and exclude samples
with <30 foraminifera from the reconstructions (e.g.,
Hawkes et al. 2011 and Kemp et al. 2018). Such low abun-
dance assemblages may not be in situ, or may have under-
gone significant taphonomic change, and thus are likely
unrepresentative of the environment at the time they
were deposited. To check that our sample assemblages
have good modern analogs in the Kemp et al. (2018) data-
set, we used the same modern analog evaluation tech-
nique: all but one of our fossil samples containing >30
foraminifera (at 186 cm depth in core R5, Table S1) met
a 10% dissimilarity threshold in pair-wise comparisons.
Using “SWLI," a standard water level index that allows
comparison among sites with differing tidal ranges (e.g.,
Horton and Edwards 2006; Kemp and Telford 2015), we
equate mean higher high water (MHHW) with 200 SWLI
and mean tide level (MTL) with 100 SWLI. At Nehalem
these tide levels are 1.26 m (2.38 m NAVD88) and 0.01 m
MTL (1.18 m NAVD88), respectively.

A key aspect of our application of a Bayesian transfer
function to Nehalem foraminiferal assemblages is that
we include prior information about sample lithology
(Cahill et al. 2016) (Figures 7 and S4; Table S1). Clastic
dominated samples typical of tidal flats or low marshes
are assumed to have accumulated between local mean
low water (18.1 SWLI or —1.02 m MTL) and MHHW (200
SWLI or 1.26 m MTL). Alternatively, organic-rich sediment,
which commonly reflects middle and high tidal marsh
settings, is assumed to have accreted above local mean
high water (182 SWLI or 1.03 m MTL); the upper bound
of the latter is the highest occurrence of foraminifera in
the Kemp et al. (2018) dataset (252 SWLI). Inclusion of the
two stratigraphic priors does not set a limit on the eleva-
tions reconstructed by the Bayesian transfer function, but
it does increase the probability that the elevations will fall
within the specified range of the assigned stratigraphic
prior. These stratigraphic priors overlap and are conserva-
tive, in that they allow the function to reconstruct RSL
changes reflecting either submergence or emergence
(Kemp et al. 2018).

Diatom analysis

To learn more about the scale and rate of changes in tidal
environments in core V1, we also sampled three-quarters
of its tidal sediment for diatoms at 1- to 3-cm intervals
(0.33-2.88 m depths on Figure 8; sampling depths in
the compacted vibracore were 0.31-2.60 m; Tables S2
and S3). The 160, 4- to 7-mm-thick, sediment samples
were prepared using standard methods (e.g., Sawai, Nasu
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& Yasuda 2002; Sawai and Nagumo 2003). At least 300
diatom valves were identified in each sample under an
oil-immersion microscope at 600x magnification. Frag-
ments containing more than half a valve were included
in the counts. We identified 314 species and forms in
76 genera in core V1 (Table S2). We show diatom abun-
dance as a percentage of the total number of diatom
valves counted, with only species that exceeded 5% of
valves in more than five samples used for paleoecologi-
cal interpretation (Figure 8, Table S3; e.g., Horton et al.
2007).

Although data on modern tidal diatom floras along
Cascadia’s coasts are available (Sawai et al. 2016a, 2016b;
Hong 2019), a well-tested diatom transfer function, com-
parable to the Bayesian foraminiferal transfer function
of Kemp et al. (2018), has not been published. The many
hundreds of diatom species that make up the diverse
assemblages typical of Cascadia tidal sequences have so
far limited the degree to which modern diatom assem-
blages can be used as good analogs for fossil assemblages
(e.g., Nelson et al. 2008; Hong 2019). For this reason, we
use only abundance (percentage) data for the most com-
mon diatom species to qualitatively assess paleoenviron-
mental change across contacts in core V1 at the East Bank
outcrop (Figure 8, Table S3).

Results—Stratigraphy, Ages, and Amounts of
Coseismic Subsidence Across Earthquake Contacts
Nehalem River floodplain stratigraphy

Grant (1989), Minor and Grant (1996, their Figure 3), and
Grant (unpublished 1994 report in Supplementary Files)
studied an outcrop in a natural levee showing four buried
soil A horizons with sharp upper peat-mud contacts on
the north side of the Nehalem River 0.8 km upstream from
its confluence with the North Fork Nehalem River (loca-
tion 16 on Figure 2). Grant (unpublished 1994 report in
Supplementary Files, “upstream” site of her Figure 6, her
Table 1) mapped stratigraphy and plant fossils along 22
m of the outcrop, and determined the approximate times
that the contacts of the buried A horizons formed with 12
C ages on spruce stumps, peat, rooted herb rhizomes,
and detrital materials, such as sticks and cones. The upper-
most buried A horizon consists of a thin peaty silty mud
containing abundant twigs and large rooted stumps of
Sitka spruce sharply overlain by sandy silt. The second A
horizon is a muddy peat with sticks and cones sharply
overlain by sandy silt containing rhizomes of Triglochin
maritima. The third A horizon is a faint, organic-rich mud
overlain by wood fragments and silt. The lowest, fourth A
horizon is a woody peaty mud, with large spruce stumps
rooted in it, sharply overlain by a thin bed of fine sand.
In 2006, we identified the younger three contacts at the
tops of the four buried A horizons in the outcrop, and in
2009 the younger two contacts in cores 5 m inland from
the outcrop. We could not find the lowest buried A hori-
zon reported from the outcrop because too much silty
mud had aggraded against the lower 60% of the original
1991 outcrop. By 2009, a winter storm had toppled four
tall spruce trees into the river, preventing access to the
outcrop.
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Based on the sharpness of the upper contacts of the
four A horizons, the amount of submergence indicated
by upward changes in lithology and plant fossils across
the contacts, and the similarity of the A horizon ages
to ages for similar stratigraphic evidence of great earth-
quakes elsewhere at Cascadia (e.g., Atwater 1987, 1992;
Atwater, Stuiver & Yamaguchi 1991; Nelson 1992a; Clarke
and Carver 1992), Grant (unpublished 1994 report in
Supplementary Files) and Grant and Minor (1996) con-
cluded that at least the uppermost and lowermost con-
tacts marked enough subsidence during great Cascadia
earthquakes to lower spruce forests to the level of tidal
flats. Our analysis of Grant's radiocarbon ages (unpub-
lished 1994 report in Supplementary Files, her Table 1)
from location 16 (Figure 2; methods described below),
gave an age interval of 491-248 cal a BP for the upper-
most sharp contact, 1108-751 cal a BP for the second
sharp contact, 1550-1181 cal a BP for the third contact,
and 1680—-1389 cal a BP for the lowest sharp contact.

Our reconnaissance of outcrops elsewhere along the
Nehalem River and the North Fork Nehalem River suggests
that the floodplain of the lower valley records primar-
ily fluvial sedimentation rather than tidal wetland sedi-
mentation that would more clearly record the coseismic
subsidence inferred by Grant (unpublished 1994 report
in Supplementary Files) at location 16 (Figure 2). River
outcrops 1- to 3-m-high south of the confluence of the
rivers showed 1 to 2 m of fluvial silty mud and silty sand,
occasionally overlying lesser thicknesses of silty tidal mud.
In outcrops at locations 7, 11, 13, 14, and 15 the stumps
of large spruce trees are eroding out of the river bank at
about the same depth as a discontinuous, dark brown,
decomposed A horizon, likely correlative with the young-
est A horizon mapped by Grant (unpublished 1994 report
in Supplementary Files) at location 16. The ~1-m depth of
the horizon, which is comparable to depths of peat-mud
contacts that we infer to mark wetlands suddenly sub-
merged during the 1700 CE earthquake near the mouth
of the river (below), suggests that trees rooted in the A
horizons may have been rapidly buried about that time.
Stumps overlain by fluvial silt and sand 1-2 m lower than
the higher stumps at sites 7, 12, 13, and 14 also appear to
be rooted in the dark brown, discontinuous remains of thin
A horizons, probably recording an earlier rapid change in
floodplain sedimentation that buried the trees and was,
perhaps, correlative with the lowest rooted stumps dated
by Grant (unpublished 1994 report in Supplementary
Files; Losey 2002). However, because evidence of sudden
land-level change in such largely fluvial sediment sections
is difficult to distinguish from rapid sediment aggradation
caused by river floods, fires, landslides, or other changes
in the drainage basin (e.g., Kelsey et al. 1998), we did not
investigate the floodplain outcrops further.

The stratigraphy beneath unforested lowland in the
southern part of the Nehalem River valley (Figures 2
and 3) poorly preserves easily identifiable records of sud-
den land-level changes. Riverbank exposures, <1-m-high
roadcuts, and floodplain elevations suggest that silty sedi-
ment within 2 m of the surface was either derived from
valley side slopes or deposited in a freshwater fluvial envi-
ronment. Eleven gouge cores at the two lowest sites east
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of the Nehalem River and northwest of Gallagher Slough
exposed fluvial silty mud to silty sand in the upper 1.5 to
2 m (locations 8 and 9 on Figure 2; Figure 3). Estuarine
clayey silt with fragments of bivalve shells beneath the flu-
vial sediment in two cores shows the minimum upstream
extent of subtidal sediment, probably of pre-late Holocene
age. Thin beds of dark, organic-rich mud in two other
cores were too discontinuous to map laterally; no beds of
wetland peat were found.

Nehalem Bay wetland stratigraphy

Grant and McLaren (1987), Grant (1989), and Grant
(unpublished 1994 report in Supplementary Files) sought
to determine the lateral extent of peat-mud contacts
(mapped by them at the tops of buried A or O horizons)
potentially marking earthquake subsidence through
reconnaissance gouge coring in present-day marshes
southwest, west, and northwest of the East Bank outcrop
(Figures 2 and 3). In more than half their cores and exam-
ined outcrops along transects across Lazarus and West
islands (the latter informally named), and 90% of their
cores in Dean marsh, these authors found beds of peaty
mud to muddy or sandy peat (at depths of 50—140 cm),
sharply capped by coarse silt, sandy silt, silty fine sand, or
fine sand. Much of the marshland west of Grant and McLar-
en’s (1987) transects has developed since 1875 (Gilbert
1875; Johannessen 1961; Losey 2002: 422; Molino et al.
2016). North of Dean marsh in the area labeled Elk pas-
ture (Figure 3), we examined 14 gouge cores along two
perpendicular transects that showed tidal mud sharply to
abruptly overlying high marsh peat at 50-60 cm depth.
If, as we infer, all contacts correlate with contact A at the
East Bank outcrop, the contact can be mapped at least 1.1
km west and 2 km northwest of the outcrop. Peaty beds
whose upper contacts might be correlated with contacts
B and C in the East Bank outcrop were found in only 6 of
these 99 cores.

Grant and McLaren (1987) described about 2—50 cm of
fine sand overlying contact A in about a third of the cores
on Lazarus and West islands, and 1-4 cm of fine sand on
the contact in half the cores near the northeastern edge
of Dean marsh (Figure 3). Like Grant (1989), we infer
all contacts to mark subsidence during the earthquake
of 1700 CE followed by sand deposition by its tsunami.
Grant's unpublished graphical core descriptions, however,
are not sufficiently detailed or sand bed thicknesses suf-
ficiently consistent for us to map the extent of sand dep-
osition across wetlands in 1700 CE. Some >15-cm-thick
sand beds in cores near river channels may be fluvial (e.g.,
Woodward, White & Cummings 1990).

Stratigraphy exposed at archeological sites and in gouge
cores on the west side of Nehalem Bay suggests that
shorelines subsided and were inundated by tsunamis as
a result of the great earthquake of 1700 CE. Grant (1989)
described five gouge cores near Cronin Point with 5-10
cm of woody to sandy peat sharply overlain by 20-30
cm of fine-to-medium sand (locations 1-3, Figure 2).
About the same time, archeologists (Scheans et al. 1990;
Woodward, White & Cummings 1990) interpreted stratig-
raphy at archeological sites near locations 14 (Figure 2)
as the result of rapid estuarine habitat changes in the
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past 400 years, caused either by migration in the positions
of the Nehalem River channel or the Nehalem spit and
dunes, or by subsidence and tsunami deposition in 1700
CE (Losey, Erlandson & Moss 2000). In far more thorough
and better documented excavations of sites near Cronin
Point, directed at understanding how people living on the
shores of Nehalem Bay responded to the earthquake and
tsunami of 1700 CE (e.g., Losey et al. 2005), Losey et al.
(2000) and Losey (2002) concluded that cultural materials
described by Scheans et al. (1990) and Woodward, White &
Cummings (1990) near Cronin Point were reworked, per-
haps but not necessarily due to erosion induced by earth-
quake subsidence. Losey’s (2002) detailed excavations at
each of three sites revealed organic-rich beds sharply over-
lain by sandy beds consistent with earthquake subsidence
of shoreline soils and tsunami deposition. Stratigraphy,
artifacts, and ages record occupation of two of the sites
shortly after 1700 CE. In excavations southwest of location
1 (Figure 3), Minor et al. (1991) and Moss and Erlandson
(1995) found evidence of occupation prior to 1700 CE but
no conclusive evidence of earthquake subsidence or tsuna-
mis. Farther northeast in an excavation about 100 m east
of location 4 (Figure 2), Woodward, White & Cummings
(1990) concluded that ceramic fragments, arrow points,
and other cultural materials in a wetland peat had been
buried by tsunami-deposited sand following sudden sub-
sidence, although as Losey et al. (2000) point out, such
materials may be reworked. Based on the sharply buried
sandy peat at 60—90 cm depth in four 2009 cores at loca-
tion 4, we concur that marshes along the northwest shore
of the bay may have subsided suddenly in 1700 CE and
were probably buried by sand deposited by a tsunami.
These sites are 3.5 km west of the East Bank outcrop and
7 km southwest of the upstream outcrop described by
Minor and Grant (1996; Figure 2, location 16).

East Bank outcrop - stratigraphy, ages, and earthquake
subsidence

Contact A - Lithology and age

In her mapping of the sharp peat-mud contacts (by tracing
four buried peaty soil O horizons) in the East Bank out-
crop along the river, Grant (unpublished 1994 report in
Supplementary Files) described the uppermost O horizon
beneath contact A as varying from a slightly peaty mud
to a fibrous peat containing forest litter and spruce cones
overlain by mud to sandy silt hosting abundant growth-
position rhizomes of Triglochin maritima. Our vibracores
showed muddy peat to peat abruptly (contact <1 mm
thick) overlain by peaty mud to coarse silt, with T. mar-
itima 0.2—-0.4 m above the contact (Figures 4, 5, S1, and
S2). Spruce stumps and root systems several meters across
mark the horizon along much of the outcrop.

Unusually precise ages for contact A are consistent
with it forming through coastal subsidence during the
great earthquake of 1700 CE (Nelson et al. 1995; Satake,
Wang & Atwater 2003; Atwater et al. 2004). Nelson et
al. (1995) dated the leaf bases and stems of the high
marsh herbs, Potentilla pacifica and Juncus cf. arcticus,
at contact A sticking up into overlying sandy silt. Rings
cut from the outer parts of roots of Picea stitchensis and
cf. Pyrus fusca rooted in the O horizon beneath contact
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A gave the most precise age for the contact and subse-
quent tree death of 269-15 cal a BP (1681-1935 CE).
A fragment of a Native American utility basket, woven
from Chamaecyparis or Thuja sp. bark and perhaps in
use at the time of the earthquake (Connolly and Byram
1997; Atwater et al. 2005 p. 21), in mud at the contact
is about the same age. Grant's (unpublished 1994 report
in Supplementary Files, her Table 1) less precise ages
on various materials above and below contact A are
also consistent with coseismic subsidence in 1700 CE
(Table 1). Even the two most precise ages for plant death
about the time of contact A (128 + 9 C a BP and 179
* 15 “C a BP, Table 1) have broad time ranges due to
the pronounced plateau in the radiocarbon calibration
curve during this period (Figure 6).

Contact A - Subsidence measured with foraminifera

We analyzed 22 samples in core V1 across contact A
(between 1.09 to 1.32 m depth) for foraminifera (Table S1).
This interval included a red-brown (7.5YR Munsell color
hue) slightly muddy peat with in-place roots and wood
fragments (1.32—1.22 m depth) sharply (<3 mm) overlain
by a slightly peaty mud with some roots and detrital plant
fragments (1.22—1.09 m depth; Figures 7A and S1). In the
slightly muddy peat below contact A, Haplophragmoides
manilaensis (27-63%), Balticammina pseudomacrescens
(5—43%) and Trochammina irregularis (9—17%) dominate
the assemblage, reflective of a high to middle marsh envi-
ronment (e.g., Hawkes et al. 2010; Engelhart et al. 2013a;
Milker et al. 2015b). Above contact A, the assemblage is
dominated by Milliammina fusca (0-61%) and Jadam-
mina macrescens (0—100%), but few (<23) foraminifera
per sample were found in the first 9 samples above the
contact. Low numbers of these species (<30 tests/ml) are
consistent with high deposition rates in a tidal flat or low
marsh environment (Hawkes et al. 2010), or with slow
rates of recolonization of foraminifera following subsid-
ence (e.g., Horton et al. 2017).

Using an analysis of the posterior samples for SWLI
values (provided by the Bayesian transfer function) for
assemblages with >30 foraminifera above and below con-
tacts (e.g., Figure S5), Kemp et al. (2018) reconstructed 1.1
+ 0.5 m of sudden RSL rise across contact A (Figure 7A).
Submergence of 1.1 m is consistent with the changes in
the foraminiferal assemblages and lithological changes
across the contact. We infer that a suddenly flooded mid-
dle to high tidal marsh changed to a tidal flat. Hawkes et
al (2011) used the same foraminiferal data to estimate
0.5 + 0.3 m of coseismic subsidence across contact A, but
that reconstruction used a previous non-Bayesian transfer
function and was hampered by seven no-modern-analog
fossil assemblages (no modern sample in the Hawkes et
al. 2010, database was a good analog for the fossil assem-
blages) above the contact.

Contact A - Changes in diatom assemblages

The significant change in diatom assemblages across
contact A (sampled every 10 mm from 0.22 m above con-
tact A to 0.18 m below it) is consistent with the change
in lithology across contact A and with the changes in
tidal environments inferred from the foraminiferal
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Figure 7: Reconstructed elevation (relative to NAVD88) near contacts A, B, and D in vibracore V1 at the East Bank
outcrop (Figures 3 and 4) and Russian core R5 from Botts marsh (Figure 5) using the Bayesian foraminiferal transfer
function of Kemp et al. (2018) with fossil assemblages (data in Table S1). To compare our subsidence reconstructions
with the results of previous foraminiferal transfer function reconstructions elsewhere, we show reconstructed
subsidence with £1c errors. Approximate gradational boundaries between elevational zones based on vascular plant
communities observed by Eilers (1976) on West Island, Hawkes et al. (2010) west of Dean marsh, by Laura Brophy
and others (written communication, 2018) on West and Lazarus islands, and by us in Botts marsh (e.g., Janousek-
Folger et al. 2014). SWLI values follow Kemp et al. (2018). Gray bars mark the depths of analyzed samples with
too few foraminifera to be meaningful in reconstructing elevation (Table S1). Red numerals indicate the amount of
subsidence (with Bayesian transfer function errors) across contacts (Table S1). Photographs to the right show sections
of core: (A) contact A, 100—-150 cm depth in core V1; (B) contact B, 170-220 cm depth in core V1; (C) contact D,
210-260 cm depth in core R5; (D) contact B, 170-220 cm depth in core R5. In (C) and (D), Triglochin maritima
rhizomes in growth position in tidal flat mud are labeled above contacts D and B.

transfer function reconstruction (Figures 7A and 8; brackish species, such as Nitzschia pura and Navicula
Tables S2 and S3). Freshwater taxa, such as Pinnularia, or  cinta, dominate assemblages of the muddy peat beneath
species with a fresh-to-brackish salinity preference, such  the contact. Although other species dominate the upper
as Cosmioneis pusilla and Pinnularia lagerstedtii, and edge of a modern diatom transect on the north shore of
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Figure 8: Relative abundance (percent of total valves counted) of diatoms in core V1. Species (those >5% in at least 5 of
160 samples) are listed in order of typical preferred salinity (ppt) range as measured for modern Oregon samples by
Sawai et al. (20164, their Table A2; Table S3). Colors highlight the general salinity preference of species. Depths and
elevations for core lithologies on the left edge of the figure are uncompacted depths (which match those shown on
Figures 5, S1, S2, and S3), as estimated from contact depths in adjacent gouge cores. On this figure, we adjusted the
original sampling depths of the 160 samples to match their position relative to the uncompacted depths of contacts
and units in the core. Depths of diatom samples shown on this figure do not match the original sampling depths on

Table S3.

Nehalem Bay, such floras are typical of middle to high
marshes in Oregon (Sawai et al. 2016a). Above the con-
tact these species are absent in the peaty mud, which
is dominated by largely brackish to brackish-marine
species, such as Planothidium delicatulum, Mastogloia
exigua, Tabularia fasciculata, Achnanthes brevipes, and
Nitzschis sigma. In particular, Planothidium delicatulum
and Mastogloia exigua prefer brackish environments,
as found mainly on muddy tidal flats (Sawai et al.
2016a). Paralia sulcata is also a common species in
our samples, but may be transported (e.g., Hemphill-
Haley 1995; Sawai 2001; Sawai, Nasu & Yasuda 2002;

Dura et al. 2016b).

Contact B - Lithology and age

Contact B, between muddy peat overlain by peaty mud
to fine sand ~1 m below contact A, is abrupt and irreg-
ular along much of the outcrop as well as in the vibra-
cores (Figures 4, 5, S1, and S2). T. maritima rhizomes
are common just above the contact (Grant, unpublished
1994 report in Supplementary Files) and a few were
found in the vibracores. A minimum age on growth-
position T. maritima rhizomes 2 cm above contact B
in the outcrop, and an averaged age on a woody herb
rhizome at contact B (which may be detrital) and frag-
ments of wood and needles in the muddy peat below
the contact in the vibracores, gave an OxCal-modeled
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age interval for contact B of 942-764 cal a BP (Table 1;
Figure 6).

Contact B - Subsidence measured with foraminifera

We analyzed 20 samples in core V1 across contact B
(between 1.93 to 2.12 m depth; Table S1). This interval
included a muddy peat, sharply overlain by a peaty mud
with roots and Triglochin maritima rhizomes and plant
fragments (Figures 5 and 7B). In the muddy peat below
contact B, the foraminiferal assemblage is dominated by
B. pseudomacrescens (7-59%), J. macrescens (26—81%),
and T inflata (2-16%), reflecting a high to middle marsh
environment. Above contact B, the assemblage is domi-
nated by J. macrescens (23-68%), M. fusca (2-41%), T.
inflata (0-54%) and B. pseudomacrescens (5-19%), typi-
cal of Oregon low and middle marshes (e.g., Hawkes et al.
2010; Engelhart et al. 2013a; Milker et al. 2015a).

Based on consistent Bayesian transfer function recon-
structions of elevation for samples above and below con-
tact B, we reconstruct 0.7 + 0.4 m of submergence across
the contact (Figure 7B; Table S1). The reconstructed
elevations suggest that a middle to high marsh suddenly
changed to the highest environments of a tidal flat or the
lowest parts of a low marsh and then gradually shoaled to
a higher low marsh.

Contact B - Changes in diatom assemblages

Changes in diatom assemblages across contact B (sam-
pled every 10 mm from 0.22 m above the contact to
0.57 m below it) are consistent with the submergence
reconstructed with the foraminiferal transfer function
(Figures 7B and 8; Tables S2 and S3). As in the muddy
peat beneath contact A, the fresh-to-brackish species Cos-
mioneis pusilla and Pinnularia lagerstedtii are common
below contact B, although no freshwater species are pre-
sent. Paralia sulcata is also a dominant species, but may
be transported. The brackish-marine species Navicula
digitoradiata and Planothidiumm delicatulum make an
appearance above the contact whereas Nitzschia sigma, a
species common in fresh-brackish water, slowly increases
above the contact. Such changes in floras suggest less sub-
sidence across contact B than across contact A, perhaps
from a higher middle marsh or low high marsh to a tidal
flat or low marsh.

Contact C and level x - Lithology and age

Grant (unpublished 1994 report in Supplementary Files)
reported that peat-mud contact C, at the top of the third
buried O horizon, was similar to contact B. In contrast,
where we found it, 0.2-0.5 m below the base of the 2009
outcrop, an indistinct contact C separated slightly peaty
mud from overlying silty mud with abundant T. maritima
rhizomes. The single minimum age for contact C from the
face of the outcrop, on T. maritima rhizomes 2 cm above
the contact, gives a calibrated age of 1119-915 cal a BP
(Table 1; Figure 6).

We could not confidently identify contact C in any of
the four the vibracores taken 3—4 m east of the face of
the outcrop (Figure 4). Extremely faint color and textural
changes in peaty mud 0.1-0.2 m below some T. maritima

Nelson et al: Identifying the Greatest Earthquakes of the Past 2000 Years at the

Nehalem River Estuary, Northern Oregon Coast, USA

rhizomes in core V1 (note minimal changes in Troels-
Smith lithologies on Figures ST and S3 at ~2.43 cm depth;
Figure S4A) are too indistinct and gradational to identify
as a contact correlative with contact C, and no lithologic
changes at this depth could be identified in the other
vibracores. For this reason, we refer to this depth in the
vibracores only as “level x." An OxCal-modeled age inter-
val for level x using four almost identical (two maximum
and two minimum) ages from the equivalent depth in
vibracores V3 and V4 shows that it is about the same age
as contact C in the outcrop, or perhaps a century older
(1180-1065 cal a BP; Table 1; Figure 6).

Contact C and level x - Changes in foraminiferal assemblages
In an effort to identify a rapid rise in RSL in core V1 that
might correlate with contact C, we analyzed 17 foraminif-
eral samples near level x (between 2.25-2.60 m depth,
Figure S4A). In the three lowest samples containing >30
foraminifera, the foraminiferal assemblage is dominated
by M. fusca (50-100%), J. macrescens (0-20%), T. inflata
(0-18%) and, Haplophragmoides spp. (0-10%), species
typical of tidal flat to middle marsh environments (Table
S1). In the nine higher samples, J. macrescens (0-80%), M.
fusca (0-78%), and T. inflata (0—13%) dominate, as com-
monly found in tidal flat to low marsh faunas. Although
the concentration of foraminifera in the sample nearest
level x is high (213 tests/ml), concentrations of higher
(27-112 tests/ml) and lower (21-88 tests/ml) samples
are quite variable.

RSL elevations reconstructed with the Bayesian trans-
fer function near level x suggest greater changes in RSL
than reflected by the very indistinct changes in lithol-
ogy, calling into question their accuracy. Regardless of
their cause, the reconstructed elevations are too vari-
able and inconsistent for us to estimate a change in RSL
near level x. For example, an increase in elevation of
~0.9 m from 2.41 to 2.37 m is followed by a decrease of
~1.1 m from 2.37 to 2.34 m despite no change in lithol-
ogy (Figure S4A). An absence of foraminifera below 2.50
m may indicate riverine freshwater sediment below that
depth, as indicated by the river-channel deposits less
than 0.3 m lower in the core (discussed below; Figure
S1). If so, the presence of M. fusca in the three low-
est samples may record a transition from a fluvial to a
brackish tidal environment. We do not think that post-
depositional taphonomic changes destroyed foraminif-
era originally present below 2.5 m because assemblages
in sediment of similar lithology higher in the core are
well preserved.

Contact C and level x — Changes in diatom assemblages

Diatom assemblages, sampled every 10 mm (from 0.36 m
below level x upward to contact B), also suggest minimal
environmental change near level x (Figure 8, Tables S2
and S3). The brackish-marine species Caloneis bacillum
gradually increases upward near level x, but the abun-
dance of other dominant species is either similar near level
x or their abundance changes gradually above it. Thus, the
changes in diatom assemblages suggest a gradual change
in salinity or tidal level superimposed on a gradual shoal-
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ing of the core site from prior to the time of level x to the
formation of contact B.

Contact D - Lithology and age

We were unable to identify contact D, at the top of the low-
est buried O horizon in the East Bank outcrop described
by Grant (unpublished 1994 report in Supplementary
Files) in gouge cores as a woody muddy peat overlain by
sandy silt, and mapped by her as indistinct and discon-
tinuous (Figure 4). In the vibracores, the section >0.3 m
below level x consists of interbedded muddy sand and
sandy mud with a few beds of sand and mud, which we
interpret as river channel and overbank deposits (Figures
S1, S2, and S3). This interpretation is supported by two
1.2- to 1.3-ka ages on moss stems and deciduous leaf frag-
ments from a distinctly bedded, detrital peat at the base
of core V1 (Table 1; Figure 5). Most of the section below
—0.35 m NAV88 in cores V1-V4 was deposited by the river
or in adjacent quiet water prior to deposition of the tidal
mud near level x.

However, the distinguishing characteristic of Grant's
(unpublished 1994 report in Supplementary Files) low-
est contact (D) marked by a buried O horizon was clusters
of large spruce stumps on the sloping tidal flat below the
outcrop. In two of tens of 2009 gouge cores near rooted
stumps on the tidal flat at the same level as contact D
and ~12 m west of the outcrop, we recovered parts of
an eroded spruce-forest O horizon under two of the larg-
est stump roots, confirming the presence of an eroded
soil in which the stumps were probably rooted. Two ages
on Picea stitchensis needles and a cone from the upper
0.2 m of the eroded O horizon match Grant's (unpub-
lished 1994 report in Supplementary Files) youngest
age for contact D from a nearby stump (Table 1). We
use only the youngest of these maximum ages, which
gives a broad OxCal-modeled age interval for contact D
at the East Bank outcrop of 1681-1244 cal a BP (Table 1;
Figure 6).

Botts marsh - stratigraphy, ages, and earthquake
subsidence
To determine the lateral extent of the four peat-mud
contacts in the East Bank outcrop to the east, we studied
the stratigraphy of Botts marsh, a 270-m by 700-m wet-
land that hosts the only laterally extensive record of RSL
changes over thousands of years that we mapped in the
Nehalem River valley lowlands (Figures 2 and 3). Strati-
graphic exploration of Botts marsh began with 9 gouge
cores described by Grant and McLaren (1987), which we
followed with 40 additional gouge cores and a series of
overlapping Russian core segments (cores R5, R17, and
R24). Using detailed field descriptions of 16 cores (e.g.,
methods of Nelson 2015) and reconnaissance descrip-
tions of 36 others, we correlated lithologies and contacts
among cores throughout the marsh and with the stratig-
raphy at the East Bank outcrop (Figures 4, 5, S1, and S3;
locations on Figure S2).

We identified four peat-mud contacts (A, B, D, and E),
bounded by lithologies suggesting rapid submergence of
the marsh that we correlated over distances of 150 to 450
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m. The most distinct contacts sharply (<3 mm thick) mark
the tops of mud-peat couplets of silty mud grading upward
into clayey silt; rooted, organic-rich clayey silt; rooted
peaty silt; silty peat; and peat. Similar couplets have been
interpreted as evidence for repeated coastal subsidence
during great Cascadia earthquakes at tens of sites along
much of the subduction zone and elsewhere (e.g., Dura
et al. 2016a; Milker et al. 2016; Shennan, Garrett & Barlow
2016). Other contacts, including possible correlatives
of contact C in the East Bank outcrop, are so indistinct
or extend over such limited distances that we could not
confidently correlate them across Botts marsh (Figures 5,
S1, and S3). These less distinct contacts are more gradual
(5-20 mm thick) and separate stratigraphic units of very
similar lithology (Figure S1) suggesting less than a few
tens of centimeters of submergence. We dated contacts A,
B, D, and E and two less distinct possible contacts using
plant macrofossils from cores R5, R17, and R24.

Contact A - Lithology and age

Contact A is the most distinct and most widespread con-
tact in Botts marsh. In >80% of cores, this contact is
marked by brown (10YR color hue) muddy peat to red-
brown (7.5YR to 5YR hues) peat sharply overlain by rooted
mud to peaty mud at depths of 0.6-1.0 m (Figures 5, 7,
S1, and S3). We identified contact A in all 52 cores in Botts
marsh, some as much as 660 m apart, suggesting that
the marsh at the time the contact formed was nearly as
extensive as it is today. Our two maximum ages for con-
tact A in Botts marsh are similar to those for contact A
at the East Bank outcrop (Table 1). Using the youngest
maximum age of 190 £ 25 "C a BP and our assumed his-
torical limit of 1850 CE, the OxCal age model gives a broad
distribution of 290-125 cal a BP that overlaps the even
broader age distributions for plant death at contact A at
the outcrop (Table 1, Figure 6). Because of its distinct-
ness and continuity there is little doubt that this contact
correlates with contact A in the East Bank outcrop and was
formed through subsidence during the great earthquake
of 1700 CE.

Contact B and level z - Lithology and age

Contact B is less distinct than contact A. It separates
rooted mud or peaty mud from underlying muddy peat
(Figures 7B, 7C, and S1), commonly with abundant fos-
sils of growth-position Triglochin maritima below and
sometime above it (Figures 5 and S3). The contact is
sharp (<3 mm thick) in only half the cores that reached
it, but the sharpness is accentuated by laminae of sandy
silt a few millimeters thick in cores 13, R5, and 39. Beds
of sand and silty sand 5-6 cm above the contact in cores
18, 110, 05, and 09 may record a related unusual surge
of sand-laden water, perhaps a tsunami that shortly fol-
lowed subsidence marked by the contact. We correlated
contact Bamong 21 cores, mostly in the northwestern and
northeastern parts of the marsh intermittently over a dis-
tance of as much as 540 m (Figures 5, S1, and S3). Our
OxCal age interval (95% CI) for contact B (1017-707 cal
a BP), based on detrital conifer fragments and a probable
minimum age on growth-position Triglochin maritima
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rhizomes just below the contact, broadly overlaps the age
distribution for contact B in the outcrop (942-764 cal a
BP; Figure 6 and Table 1).

Because of the greater depth of contact B in core R5 rel-
ative to nearby cores (Figures 5, S1, and S3), we initially
searched for the contact higher in the core. The gradual
(over 10 mm) upward change from slightly muddy peat
overlain by muddier peat at 148 cm depth, which we label
“level z,” is indistinct, but similar indistinct contacts of
about the same age have been considered as evidence for
subsidence during great Cascadia earthquakes (Atwater
and Hemphill-Haley 1997; Milker et al. 2016). However,
we were unable to confidently correlate level z to similar
more distinct contacts in other cores, and two maximum-
limiting ™C ages near level z in core R5 show that this
level is probably much younger (706-363 cal a BP, 95%
CI) than contact B at the East Bank outcrop (942-764 cal
a BP; Table 1; Figure 6). In a final test of the significance
of level z as a possible earthquake contact, foraminiferal
assemblages across it show no significant change in envi-
ronment, consistent with its minimal change in lithology
(Table ST; Figure S4C).

Contact B and level z - Subsidence measured with
foraminifera

To help confirm our correlation of contact B in core R5
with contact B in core V1, we analyzed foraminiferal
assemblages in five samples above and five below an
abrupt (1-mm) contact at 1.97 m separating a red-brown,
high-marsh peat with 7.5YR hues from a slightly peaty
mud (Figures 8D and S1). The upper four of the five sam-
ples from the peat are dominated by T. inflata (13-43%),
J. macrescens (25-34%), Haplophragmoides spp. (9—28%),
and B. pseudomacrescens (4—32%), reflecting a middle to
high marsh environment (Table S1). Above contact B, the
assemblages are dominated by J. macrescens (25-39%),
M. fusca (13-42%), T. inflata (12-31%), and Ammobacu-
lites spp. (5-31%), taxa typically abundant in muddy tidal
flats and low marshes. Lower foraminiferal concentrations
above the contact (95-127 tests/ml, Table S1) than those
below (127-167 tests/ml) may indicate slightly lower dep-
osition rates above versus below the contact.

Bayesian transfer function reconstructions of elevation
using the two samples immediately above and below con-
tact B in core R5 show submergence across the contact of
1.0 £ 0.4 m (Figure 8D; Table S1). The reconstruction sug-
gests that a middle to high marsh was suddenly changed
to a tidal flat or lower low marsh.

Contact C - Lithology and age

Contact C, which is discontinuous but mappable along
>210 m of the East Bank outcrop (Figure 4), was diffi-
cult to find in Botts marsh. Assuming our correlation of
contact B across the marsh is accurate, we noted possible
correlatives of contact C—sharp contacts with changes in
lithology similar to those of contact B—in only 5 of the 31
cores that reached the next lower contact (D; Figure S3).
Because none of the three cores that we sampled for radi-
ocarbon include contact C, we have no OxCal age interval
for it in Botts marsh.
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Contact D - Lithology and age

Contact D is the second most lithologically distinct
contact, and although reached in fewer cores through-
out the marsh (31), it is sharp in a greater proportion
of cores (>90%) than is contact A. Especially in cores
in the central and eastern marsh, an abrupt (<1 mm)
contact separates red-brown (7.5YR hue) high-marsh
peat from overlying rooted mud or peaty mud (10YR to
2.5Y hues; Figures 5, 7C, S1, and S3). High salt marsh
apparently extended over much of the northern and
eastern part of the present-day marsh at the time con-
tact D formed. An 18-mm-thick interval of peaty mud
with traces of very fine sand above the contact in core
R5 suggests an unusual surge of water at the time the
contact formed. As in core V1 at the East Bank out-
crop, we infer from its absence in cores that contact D
has been eroded and replaced by younger river chan-
nel and overbank deposits in an area 50-100 m wide
along the western edge of the marsh near the river
(Figures 5, S1, S2, and S3).

The age of contact D in Botts marsh is bracketed by the
youngest two of nine maximum ages on detrital materials
in muddy peat below the contact, and by a minimum age
on a leaf base of Triglochin maritima 1-3 cm above the
contact. Using these maximum and minimum ages, the
OxCal age model gives a 95% interval of 1568-1361 cal
a BP for the contact in core R24 (Table 1; Figure 6). As
this interval falls well within the broader modeled inter-
val for contact D at the East Bank outcrop, we infer it to
be the most accurate age for contact D and correlate this
contact with contact D at the East Bank outcrop and the
adjacent stumps on the tidal flat (Table 1; Figures 4, 5,
S2,and S3).

Contact D - Subsidence measured with foraminifera

In core R5 five samples were taken above and four below
1-mm contact D at 2.30 m, which separates a high-
marsh peat from a peaty mud to muddy peat above it
(Figures 7D and S1). Assemblages in the four samples
from the peat consist mostly of Haplophragmoides spp.
(43-56%), Trochamminita spp. (9—18%), B. pseudoma-
crescens (9-26%), J. macrescens (5—15%), and T. inflata
(3—-11%), reflecting a high to middle marsh environment
(Table S1). Above contact D, the assemblages are domi-
nated by M. fusca (20-72%), J. macrescens (14—48%),
and Haplophragmoides spp. (5-50%), similar to assem-
blages found in muddy tidal flats and low marshes in
Oregon.

Bayesian transfer function reconstructions for the
two samples immediately above and below contact D
give elevations closer to each other than for upper and
lower samples suggesting lesser or perhaps gradual
submergence across the contact. But wood and a little
sand in the sample above the contact suggest that it was
deposited rapidly as a mixture of different materials,
probably by a tsunami, and so its assemblage is unlikely
to be representative of a stable tidal environment (e.g.,
Kemp et al. 2018). The sample below the contact con-
sists of peat with minor amounts of wood. The 6% M.
fusca and the presence of Ammobaculites spp. (1%;
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Table S1), species typically found on tidal flats and in low
marshes (Engelhart et al. 2013a; Milker et al. 2015a), in
this sample is likely due to infiltration of foraminiferal
tests from above the contact into cracks in the peat (e.g.,
Engelhart et al. 2013b; Milker et al. 2016; Kemp et al.
2018). Because assemblages in the two samples closest
to the contact may not accurately reflect pre- and post-
submergence environments, we infer that submergence
across contact D was closer to the difference between the
reconstructions for samples at 228.5 cm and 231.5 cm
depths (1.0 £ 0.4 m) than between the difference for the
samples closest to the contact (229.5 cm and 230.5 cm
depths; 0.6 = 0.4 m) (Figure 7D; Table S1). The greater
difference (1.0 m £ 0.4 m) is more consistent with the
lithologic changes across contact D in Botts marsh cores
(Figures 5, S1, and S3) and with Grant's (unpublished
1994 report in Supplementary Files) description of con-
tact D in the East Bank outcrop.

Contact E - Lithology and age

Contact E, stratigraphically below the contacts in the East
Bank outcrop, was tentatively identified in 10 cores (R5, 9,
39, 11, R17, 03, 37, 35, 38, and 24) spanning a distance of
250 m along the upper edge of the northern and eastern
marsh (Figures 5, S1, S2, and S3). Although the contact
between muddy peat and overlying peaty mud is sharp in
5 of the cores, in 4 others (for example, in core R5, Figure
S4) 1-3 cm of muddy peat alternates with 2—3 cm of mud
and peaty mud in the interval 5-15 cm above the contact.
Such alternating lithologies suggest fluctuating marsh
environments rather than many decimeters of sudden
tidal flooding. Using an average of three maximum ages
on detrital materials in the muddy peat beneath contact E
in cores R17 and R24, our Botts marsh OxCal model gives
a maximum-age interval (95% Cl) of 1857-1570 cal a BP
for the contact (Table 1; Figures 5 and 6).

Contact E - Foraminiferal assemblages

Although the two samples from the muddy peat at 2.57—
2.59 m contain assemblages typical of a middle to high
marsh (largely Haplophragmoides spp., J. macrescens, B.
pseudomacrescens, and Trochamminita spp.), none of the
other 11 samples from core R5 contain sufficient num-
bers of foraminifera (>30) to make paleoenvironmental
interpretations (Figures S1 and S4B, Table S1). Thus, no
elevational reconstructions are possible for most of this
segment of core R5. The lack of foraminifera suggests that,
except for the two muddy peat samples, this section of
core R5 may record largely freshwater environments.

Discussion—Earthquake Correlation, Timing, and Size
Like many before us (Atwater 1992; Nelson, Jennings &
Kashima 1996; Atwater and Hempbhill-Haley 1997; Kelsey
et al. 2002; Nelson, Kelsey & Witter 2006; Milker et al.
2016), we use the degree of overlap among our modeled
age distributions for Nehalem peat-mud contacts and the
distributions for other sites as one of several criteria to
assess whether or not the Nehalem contacts may record
megathrust ruptures hundreds of kilometers long. Unlike
the quantitative overlap comparisons of Hutchinson
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and Clague (2017), our comparisons (Figure 9) are only
qualitative because the dating uncertainties for Nehalem
contacts make quantitative comparisons with other sites
uncertain. Another difference between our analyses and
theirs is that Hutchinson and Clague (2017) pooled ages,
mostly maximum ages, from the five central Cascadia
sites whose age distributions they compared, whereas
(as explained above) we selected the youngest, high-
quality, maximum-limiting age, and in many cases an old-
est minimum age (e.g., Goldfinger et al. 2012; Milker et
al. 2016), to model the times of earthquakes or tsunamis
at 13 sites between the Columbia River and Cape Blanco
(Figure 9). In the selection process we evaluated available
ages <2000 cal a BP from the 13 sites (235). About 137
of these are compiled by Leonard et al. (2010), Goldfin-
ger et al. (2012), Engelhart et al. (2015), and Hutchinson
and Clague (2017); another 98 ages, from Lewis and Clark
River, Netarts Bay, Siletz Bay, Alsea Bay, and this paper, are
unpublished.

Contact A - 1700 CE

Based on the <1.5-m depth of the distinct change in
lithology across contact A, its cap of fine, well sorted sand
in tens of cores on Lazarus and West islands, the distinct
change in diatom assemblages, the foraminiferal trans-
fer function reconstruction of 1.1 + 0.5 m of subsidence
across it, the >7-km distance over which its probable
stratigraphic evidence in the lower Nehalem River val-
ley extends (Minor and Grant 1996), and its age relative
to the ages of similar evidence at similar depths at other
sites (Figures 2, 3, 4, 5, 6, 7A, 9, S1, and S3; Table 1),
we infer that contact A was produced by coseismic coastal
subsidence and correlate it with similar evidence attrib-
uted to the 1700 CE earthquake and tsunami along much
of the subduction zone (e.g., Nelson et al. 1995; Nelson,
Kelsey & Witter 2006; Atwater and Hemphill-Haley 1997,
Witter, Kelsey & Hemphill-Haley 2003; Atwater et al.
2004; Graehl et al. 2014; Valentine et al. 2012; Wang et
al. 2013; Milker et al. 2016; Hutchinson and Clague 2017,
Padgett 2019).

Our reconstructed submergence for contact A is consist-
ent with subsidence during a great earthquake rupture (or
several closely spaced ruptures) hundreds of kilometers
long. Estimates of earthquake magnitude based on mod-
eling the 1700 CE tsunami in Japan (Satake et al. 1996;
Satake, Wang & Atwater 2003) suggest a long rupture as
well. Subsidence marked by contact A is similar to the
estimates for correlative contacts at Nestucca Bay (1.1 =
0.5 m) and Salmon River (1.4 + 0.4 m) (Kemp et al. 2018),
58 km and 75 km to the south, respectively (Figures 1
and 9). Hemphill-Haley's (1995; Atwater and Hemphill-
Haley 1997) diatom-based estimate of >1.1 m at Willapa
Bay, 100 km to the north, is also consistent with these
estimates, as are the Bayesian foraminiferal values for the
1700 CE contact at Willapa Bay (1.3 £ 0.8 m) calculated
by Kemp et al. (2018; data of Sabean 2004 as modified
by Wang et al. 2013) and the semi-quantitative estimate
using pollen and diatoms of 1.0 £ 0.5 m for the same con-
tact at the Johns River, 134 km to the north (Shennan et al.
1996). However, Padgett's (2019) Bayesian foraminiferal
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feature of OxCal (Bronk Ramsey 2008, 2009). Red labels

mark distributions for contacts at the Nehalem River estuary.

Ages used were selected from 235 published (Witter, Kelsey & Hemphill-Haley 2003; Witter et al. 2009, 2011, 2013;
Kelsey et al. 2005; Nelson, Asquith & Grant 2004; Nelson, Kelsey & Witter 2006, 2008; Peterson et al. 2010; Graehl et
al. 2014; Milker et al. 2016; Hutchinson and Clague 2017) and 106 unpublished ages. Shaded columns show the 95%

Cl range for distributions for contacts B and D (Figure 6).

Age intervals (purple bars) for sites in the Willapa Bay region,

mostly based on the ages of rings from stumps inferred to have died shortly after earthquake subsidence, are those
of Atwater et al. (2004; Hagstrum, Atwater & Sherrod 2004). The probability distribution in front of interval W (light

purple), is a more precise estimate calculated from the
p. 22). The three ages were also used in the age model

average of three ages reported by Atwater and Griggs (2012
for Lewis and Clark River. Age ranges for marine turbidites

offshore are those of Goldfinger et al. (2012; averaged corrected ages, Appendix 1, Land-marine data tab).

estimates for subsidence in 1700 CE from four sites in
Willapa Bay and Johns River are more variable (0.4 + 0.4
mto 1.5+ 0.5 m).

But subsidence at Nehalem in 1700 CE was much larger
than that for its neighbor site at Netarts Bay only 35 km
to the south (0.4 £ 0.3 m) (Shennan et al. 1998; Wang
et al. 2013; Kemp et al. 2018) (Figure 9). To explain the
change from 1.1 m to 0.4 m of subsidence over only 35 km
Kemp et al. (2018) theorized that the smaller subsidence

at Netarts was the result of greater along-strike differ-
ences in megathrust slip or rupture geometry than mod-
eled by Wang et al. (2013), post-seismic uplift too rapid
for foraminifera to recolonize to (e.g., Horton et al. 2017),
or a combination of the two. Although Bayesian transfer
function reconstruction errors are large, a 1:7 difference
in modeled subsidence for the same earthquake over such
a short distance suggests the assumption that the amount
of coseismic subsidence at a coastal site is proportional to
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rupture extent and earthquake magnitude may not apply
for some earthquakes. Padgett (2019) discusses these and
other potential reasons for the variability in his Bayesian
transfer function estimates of subsidence during the 1700
CE earthquake in southwestern Washington.

Contact B - 942-764 cal a BP

Contact B, typically separating muddy peat from peaty
mud or rooted mud, is considerably less widespread and
distinct than contact A. We correlate it, however, 350 m
east-west in Botts marsh and >210 m north-south along
the East Bank outcrop. A few millimeters of silty fine sand
near contact B in seven Botts Marsh cores suggest inunda-
tion of the marsh by a tsunami. Our OxCal age intervals for
contact B at the East Bank outcrop (942-764 cal a BP) and
in Botts marsh (1017-707 cal a BP) are consistent with the
correlation of contact B with the top of the second young-
est buried A horizon described by Grant (unpublished
1994 report in Supplementary Files) 5 km upriver at site
16 (Figures 2, 3, 4, 5, 6, S1; Table 1). The foraminiferal
transfer function estimates of RSL rise across the contact
0f 0.7+ 0.4 min core V1 and 1.0 £ 0.4 m in core R5 differ
by a third; the greater value in core R5 is probably due to
the presence of Ammobaculites spp. in the samples just
above the contact (Table S1) (e.g., Kemp et al. 2018). As
the diatom assemblages in core V1 are consistent with a
1-m rise in RSL across contact B, we attribute the differ-
ence in subsidence between the two cores entirely to sta-
tistical variation (the 1o errors of the two measurements
substantially overlap). If coseismic as we infer, the 0.7-1.0
m rise in RSL is consistent with a great earthquake rupture
hundreds of kilometers long.

The closest estimate of coseismic subsidence for a cor-
relative of contact B is at Willapa Bay, 100 km north of
Nehalem. Although based on a semi-quantitative index,
Atwater and Hemphill-Haley's (1997) estimate of subsid-
ence marked by the upper contact of their soil W, buried
about the time of contact B (Figure 9), is <1 m, consistent
with our Nehalem value.

The more precise of our OxCal age intervals for contact
B (942-764 cal a BP, East Bank outcrop, Figure 6) overlaps
substantially with OxCal distributions for 9 of the sites on
Figure 9 from Willapa Bay to southern Oregon, a distance
of 400 km. The interval also overlaps with the age range
for offshore turbidite T3, one of the thicker and more
widespread turbidites of the marine record (Goldfinger et
al. 2012). As a great earthquake rupture hundreds of kilo-
meters long is consistent with 0.7—-1.0 m of coseismic sub-
sidence, contact B at Nehalem likely correlates with much
previously published coastal evidence (e.g., Atwater et al.
2004; Kelsey et al. 2005; Nelson, Kelsey & Witter 2006,
2008; Schlichting and Peterson 2006; Witter et al. 2009;
Milker et al. 2016; Minor and Peterson 2016; Hutchinson
and Clague 2017) for a great earthquake about this time.
But whether or not the subsidence at these sites was pro-
duced during one or several earthquake ruptures, and
where the ruptures initiated, cannot be determined with
our data from Nehalem. In their summary of evidence and
ages for a great earthquake about this time, Hutchinson
and Clague (2017) noted tsunami evidence for two dis-
crete earthquakes, suggesting that contact B may record a
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great earthquake that did not rupture the entire subduc-
tion zone.

Contact C - 1119-915 cal a BP

Although Grant (unpublished 1994 report in Supplemen-
tary Files) mapped contact C for >210 m along the East
Bank outcrop (Figure 4), we were unable to find it in the
vibracores adjacent to the outcrop or correlate it more
than a few tens of meters across Botts marsh (Figures 5,
S1, S2, and S3). Neither foraminiferal nor diatom assem-
blages in core V1 at the stratigraphically equivalent depth
(level x) of contact C in the outcrop show any significant
change in tidal environments across the contact. Possi-
ble correlatives of contact C in the few Botts marsh cores
where we found them are indistinct compared with con-
tacts A and B. River deposits in the lower parts of some
cores in the western part of the marsh suggest that a for-
mer contact C in these cores may have been eroded by a
river channel to the east of the present channel (Figures
$1,52, and S3).

We infer that at the time contact C formed at the out-
crop, the core-V1 site, and probably the sites of some
of the other cores in the marsh with possible contact-C
correlatives, were lower low marsh whose tidal flooding
during possible coseismic subsidence recorded by contact
C in the outcrop produced little change in lithology or
microfossil assemblages. As illustrated by Nelson, Kelsey &
Witter (2006, their Figure 3B), whether or not coseismic
subsidence is recorded by distinct changes in tidal marsh
litho- and bio-stratigraphy in a core depends on which
tidal environments contemporaneous with the earth-
quake the core penetrates (e.g., Nelson 1992a; Nelson,
Asquith & Grant 2004).

Although the broad, minimum-age, 95% CI probability
distribution for the sample limiting the age of contact C at
the East Bank outcrop (1119-915 cal a BP, Figure 6) signif-
icantly overlaps 7 of the sites of Figure 9, the distribution
does not overlap the 95% ClI age distribution for the burial
of the third A horizon at the upstream site described by
Grant (unpublished 1994 report in Supplementary Files)
(1550-1181 cal a BP, location 16) or, notably, the pre-
cise interval for earthquake U at Willapa Bay (Atwater et
al. 2004). Although Grant (unpublished 1994 report in
Supplementary Files) inferred that contact C at the out-
crop might record coseismic subsidence during a great
earthquake, our inability to map the contact beyond the
outcrop across Botts marsh precludes the argument that
it records substantial subsidence during a great earth-
quake. Although a number of coastal sites host evidence
for a great earthquake older than contact B and younger
than contact D (e.g., those cited in Hutchinson and Clague
2017), we found no extensive evidence for such an earth-
quake in lowland areas of the Nehalem River estuary.

Contact D - 1568-1361 cal a BP

Based on the sharp (<3 mm) contact at the top of bright-
colored, 7.5YR-hue peat in many cores, high tidal marsh
extended over much of the northern and eastern part of
Botts marsh at the time that contact D recorded a rapid
change to a tidal flat. Radiocarbon ages from cores R5,
R17, and R24, as well as from tidal-flat stumps at the East
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Bank outcrop, confirm that contact D is as widely dis-
tributed across Botts marsh as contact A (Figures 4 and
5; Table 1). Correlation to the fourth buried A horizon
described by Grant (unpublished 1994 report in Supple-
mentary Files) is suggested by three C ages obtained
by her from stumps rooted in the A horizon at site 16
(Figure 2). As for contacts A and C, our transfer function
reconstruction of subsidence across contact D, 1.0 m + 0.4
m, is consistent with a megathrust rupture along many
hundreds of kilometers of the subduction zone.

No useful quantitative estimates of coseismic subsid-
ence exist for contact-D equivalents at sites within 250 km
of Nehalem. Semi-quantitative estimates are consistent
with our Nehalem subsidence for contact D: Atwater and
Hemphill-Haley's (1997) estimate of >1 m using diatoms
across the upper contact of their soil S at Willapa Bay, and
Shennan et al.'s (1996) estimate of 1.0 £ 0.5 m using pol-
len and diatoms at Johns River, 134 km north of Nehalem
(Figure 9).

Our age distribution for contact D overlaps all age dis-
tributions for a probable correlative contact on Figure 9
(Neskowin lacks a deposit in this age range and so is an
exception). It also overlaps substantially with the age range
for turbidite T5, one of the thickest and most extensive
of the turbidites in the offshore sequence of Goldfinger
et al. (2012). Our stratigraphic evidence at Nehalem and
similar evidence from many of these other sites suggests
that this contact marks a great earthquake that ruptured
much of the subduction zone about 1568-1361 cal a BP
(e.g., Atwater 1992; Nelson 1992a; Atwater and Hemphill-
Haley 1997; Hutchinson et al. 2000; Kelsey et al. 2002;
Witter, Kelsey & Hemphill-Haley 2003; Atwater et al.
2004; Nelson, Kelsey & Witter 2006; Peterson et al. 2010;
Valentine et al. 2012; Graehl et al. 2014; Milker et al. 2016;
Minor and Peterson 2016; Hutchinson and Clague 2017).
Such evidence led Nelson, Shennan & Long (1996; and
Nelson, Kelsey & Witter 2006), among others (e.g., Milker
et al. 2016), to suggest that contact D records an earth-
quake as large or larger than the one in 1700 CE.

Contact E - 1857-1570 cal a BP

Contact E probably marks a rapid local change in tidal and
freshwater environments, perhaps limited to Botts marsh,
rather than a RSL change caused by regional subsidence
during a great earthquake. We correlated contact E among
only 12 cores <250 m apart in the central and eastern
parts of Botts marsh. Although the contact is sharp in six
of the cores, thin beds of muddy peat alternate with mud
and peaty mud above and below the contact suggesting
fluctuating marsh environments rather than many deci-
meters of sudden tidal flooding during coseismic subsid-
ence. Samples above and below the contact in two adja-
cent Russian core segments (1 m apart) are largely devoid
of foraminifera, probably because they record primarily
freshwater environments. The maximum-age probability
distribution for contact E significantly overlaps with the
distributions for nine sites on Figure 9, but at all but two
of the sites the overlap with the distribution for contact
D is greater and so a correlation with contact D is more
likely than with contact E. The absence of a strong cor-
relation of contact E's peak with any pre-1600-BP peaks
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for earthquake contacts at other sites is consistent with a
local rather than regional change in RSL across contact E.

Conclusions

The lateral extent of sharp peat-mud contacts in cores and
outcrops, coseismic subsidence evaluated with fossil dia-
tom assemblages and reconstructed with fossil foraminif-
eral faunas, and correlations using “C-based age models
(four of the criteria of Nelson, Shennan & Long 1996, and
Shennan, Garrett & Barlow 2016) provide evidence of only
three great megathrust earthquakes during the past 2000
years at the Nehalem River estuary. A peat-mud contact
marking subsidence in 1700 CE, sometimes overlain by
tsunami-deposited sand, can be traced over distances as
great as 7 km throughout the lower estuary. Stratigraphic
evidence for two earlier earthquakes, marked by peat-
mud contacts B and D, is much less extensive than that
for the 1700 CE earthquake and its tsunami. From 2—16
mm of silty sand above contact B in a few cores we infer
that its earthquake may have been shortly followed by a
tsunami. Peat-mud contacts marking coseismic subsid-
ence during the two earlier earthquakes were found only
in a 700-m by 270-m tidal marsh near the mouth of the
river, where they extend for hundreds of meters. Although
some other Cascadia coastal studies report evidence for
an earthquake between contacts B and D, we found no
extensive evidence for such an earthquake at Nehalem.
The lack of evidence, except at the formerly well exposed
East Bank outcrop, may be due to the complexities of pre-
serving identifiable evidence of older earthquakes in the
rapidly shifting shoreline environments of the lower river
and bay. Radiocarbon ages, however, suggest that contacts
B and D correlate with two of three buried, riverbank A
horizons mapped by Grant (unpublished 1994 report in
Supplementary Files) 5.3 km upriver. A fifth contact, E, is
much less extensive and more variable in sharpness than
younger contacts. The lack of foraminifera across contact
E suggests that it marks a rapid local change in tidal and
freshwater environments rather than RSL rise caused by
regional subsidence during a great earthquake.

From changes in diatom assemblages across contacts A
and B in a vibracore (V1) at the East Bank outcrop, and
changes in foraminiferal assemblages across contacts A
and B in the vibracore, and contacts B and D in a Botts
marsh core (R5), we infer 0.7-1 m of subsidence during
the three earthquakes. Quantitative reconstructions of the
rapid submergence marked by the three contacts using a
Bayesian foraminiferal transfer function provide the fol-
lowing estimates of coseismic subsidence: contact A, 1.1+
0.5 m (core V1); contact B, 0.7 £ 0.4 m (core V1) and 1.0 m
+ 0.4 m (core R5); and contact D, 1.0 m £ 0.4 m (core R5).

The few and highly variable measures of subsidence at
other central Cascadia coastal sites—and recent geophysi-
cal modeling of variable megathrust slip during the long
rupture in 1700 CE—limit conclusions about rupture
length and earthquake magnitude for the three Nehalem
earthquakes. The 0.7-1.0 m of subsidence measured
across contacts A, B, and D was likely produced by rup-
ture of many hundreds of kilometers of the subduction
zone during individual earthquakes. Much smaller subsid-
ence measured across these contacts using non-Bayesian



Nelson et al: Identifying the Greatest Earthquakes of the Past 2000 Years at the

Nehalem River Estuary, Northern Oregon Coast, USA

transfer functions at sites in central Cascadia is better
explained by patches of variable slip along the megathrust
(Wang et al. 2013; Kemp et al. 2018) rather than by shorter
ruptures during serial earthquakes hours to decades apart.
Estimated earthquake magnitude in 1700 CE based on
modeling the tsunami in Japan, and the C dating of the
rings of trees killed by coseismic subsidence in 1700 CE
at sites 900 km apart (Nelson et al. 1995), makes short,
serial earthquake ruptures for contact A unlikely, but the
1700 CE evidence says little about the possibility of short
ruptures at the times of contacts B and D.

As with subsidence data, regional correlation of subsid-
ence contacts based on the degree of overlap of their mod-
eled radiocarbon-age probability distributions (Figure 9)
is consistent with contacts A, B, and D recording earth-
quakes that ruptured many hundreds of kilometers of the
subduction zone in 1700 CE, and about 942-764 cal a BP
and 1568-1361 cal a BP, respectively. Neither measured
subsidence nor comparison of modeled C-age distribu-
tions can conclusively distinguish between long and short
ruptures for the three great earthquake contacts at the
Nehalem River estuary.

Supplementary Files

The Supplementary Files for this paper (at https://doi.
org/10.7910/DVN/UCGUU3) include the following
detailed information and data for sites described in the
paper that are not summarized elsewhere. The introduc-
tion and explanation of the Supplementary Files can be
found in an introductory pdf file (Part 1, Nelson et al. —
Supplemental Files — Introduction, Figure captions, eleva-
tions, C added variance, OxCal age models, references),
readable with Adobe Reader 8 and higher. This introduc-
tory pdf file also includes the captions (Part 2) for the
additional figures, which are included as a separate sup-
plementary pdf file (Part 3, Nelson et al. — Supplementary
Files — Figures), the methods used to determine sampling
and core elevations (Part 4), the explanation of variance
added to radiocarbon age errors (Part 5), and the listing of
code for selected OxCal radiocarbon age models (Part 6)
used in the paper. An historically important, unpublished
report by Grant (1994) is a separate pdf file (Part 7, Nelson
etal.—Supplementary File — Grant 1994 — unpublished MS
degree report on earthquake stratigraphy of Salmon and
Nehalem rivers 8Nov94.pdf). The three tables of micropal-
eontologic data are also separate Excel files (Part 8, Nelson
et al. — Table S1 Foraminiferal data and reconstructions.
xIsx; Part 8, Nelson et al. — Table S2. Total diatom valves
counted in core V1.xlsx; Part 8, Nelson et al. — Table S3.
Diatom species abundance for most common species in
core V1.xlsx). References cited in captions for the figures
and elsewhere in the Supplementary File are listed under
References Cited at the end of the introductory pdf file
(Part 1, Nelson et al. — Supplemental Files — Introduction,
Figure captions, elevations, “C added variance, OxCal age
models, references).
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