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Abstract We report stratigraphic evidence of land-level change and tsunami inundation along the
Alaska-Aleutian megathrust during prehistoric and historical earthquakes west of Kodiak Island. On Sitkinak
Island, cores and tidal outcrops fringing a lagoon reveal five sharp lithologic contacts that record coseismic
land-level change. Radiocarbon dates, 137Cs profiles, computerized tomography scans, and microfossil
assemblages are consistent with rapid uplift circa 290–0, 520–300, and 1050–790 cal yr B.P. and subsidence
in A.D. 1964 and circa 640–510 cal yr B.P. Radiocarbon, 137Cs, and 210Pb ages bracketing a sand bed traced
1.5 km inland and evidence for sudden uplift are consistent with Russian accounts of an earthquake and
tsunami in A.D. 1788. The mixed uplift and subsidence record suggests that Sitkinak Island sits above a
nonpersistent boundary near the southwestern limit of the A.D. 1964 Mw 9.2 megathrust rupture.

1. Introduction

The Alaska-Aleutian megathrust (Figure 1) has been the source of three earthquakes larger than M 8.6 since
1957, yet the rupture and tsunami history of the subduction zone is largely unknown. The megathrust’s
paleoseismic history has been inferred from coastal and archaeological stratigraphy but only from Kodiak Island
eastward (Figure 1) [Gilpin, 1995; Carver and Plafker, 2008; Hutchinson and Crowell, 2007; Shennan et al., 2008,
2014]. No previous paleoseismic or paleotsunami data along the Aleutian-Alaska megathrust are available west
of central Kodiak Island, along a source region where tsunami modeling suggests large ruptures would have
severe local impacts and could cause significant damage along the west coast of North America and Hawaii
[Ryan et al., 2012; Ross et al., 2013].

The spatial and temporal behavior of megathrust rupture boundaries is important for theoretical models of
earthquake occurrence and hazard analyses, but few paleoseismic observations exist to test rupture
boundary histories over multiple earthquake cycles. The boundary between the A.D. 1964 Mw 9.2 and the
A.D. 1938 Mw 8.2 ruptures [Johnson and Satake, 1994] (Figure 1) is assumed to represent a long-lived rupture
barrier [Wesson et al., 2007], possibly related to the subducted Patton-Murray seamount chain and the Aja
Fracture Zone [von Huene et al., 2012]. Rupture boundaries lasting several earthquake cycles have been
recognized in Sumatra [Meltzner et al., 2012] and Chile [Melnick et al., 2009]. By contrast, megathrust ruptures
have crossed fundamental structural barriers such as a plate triple junction in the Solomon Islands [Taylor
et al., 2008]. Previous studies in Alaska suggested that the Alaska-Aleutian megathrust and the Yakutat
microplate ruptured together in prehistoric times beyond the eastern edge of the A.D. 1964 rupture
[Shennan et al., 2009] and that segments within the A.D. 1964 rupture zone combine in variable patterns
[Hutchinson and Crowell, 2007; Shennan et al., 2014].

To test the persistence of the western boundary of the A.D. 1964 rupture, we investigated the paleoseismic
history of the southern coast of Sitkinak Island, 15 km southwest of Kodiak Island (Figure 1). Because it is
located ~120 km from the Alaska-Aleutian trench and above the subduction interface, the coastline of
Sitkinak Island is expected to record sudden vertical motions associated with megathrust rupture. The
amount and direction (uplift or subsidence) of coseismic land-level change is dependent on site location with
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respect to megathrust slip patches [Savage and
Hastie, 1966] and is manifest in coastal sediment as
an abrupt change in relative sea level [Plafker and
Savage, 1970; Atwater, 1987]. Coseismic uplift on
the northern coast of Sitkinak Island in A.D. 1964
was estimated at 0.45± 0.3m [Plafker and
Kachadoorian, 1966] with no significant tsunami
[Britt, 1965; Plafker, 1969], consistent with the island
marking the endpoint of significantmegathrust slip
in A.D. 1964. Sitkinak Island sits above a highly
coupled (>90%) portion of the megathrust and is
currently undergoing interseismic subsidence at
~7mm/yr (data available at http://pbo.unavco.org/
station/data/AC45/). High coupling (>70–90%)
extends at least 380 km southwest of Sitkinak Island
to near the Shumagin Islands where GPS
observations suggest the interface is primarily
creeping [Fournier and Freymueller, 2007;
Freymueller et al., 2008].

We describe lithostratigraphic and microfossil
evidence of five sudden land-level changes—both
uplift and subsidence—and seawater inundation
of freshwater marshes in the southwestern part of
Sitkinak Lagoon. We present evidence of sudden
uplift and a sand sheet from the fifteenth to
nineteenth centuries on Sitkinak that we infer
record a large megathrust rupture in A.D. 1788
and the tsunami it generated. We outline
observations that suggest multiple tsunamis after
circa 2.2 ka and prior to A.D. 1788 are recorded on
the southern coast of Sitkinak. Finally, we discuss

evidence that megathrust ruptures do not always stop at Sitkinak as was observed in A.D. 1964 and the
implications of our observations for seismic hazard models.

2. Methods

We examined deposits in the southwestern arm of the Sitkinak Lagoon (Figure 2) for evidence of sudden
land-level changes and tsunami inundation. Sediment samples were obtained and described from 15
hand-driven cores and five tidal bank exposures along three transects. We used foraminiferal and diatom
assemblages to infer the direction, but not magnitude, of sudden land-level changes (Tables S1 and S2 in the
supporting information). Computerized tomography scans show unit density contrasts and reveal contact
sharpness and continuity that is not always clear from optical inspection (Figures 3, S2, and S3 in the supporting
information). 137Cs, 210Pb, pumice identification (by major oxide glass geochemistry), and accelerator mass
spectrometry (AMS) 14Cmethods date possible tsunamis and land-level changes (Tables S3–S5). We established
vertical elevation control by calculating local orthometric heights with a real-time kinematic Global Positioning
System (GPS) survey.

3. Evidence for Coseismic Uplift and Subsidence

Tidal and wetland deposits along the edge of the lagoon consist primarily of alternating peat and silt
(Transect 3, Figures 2 and S1). To test whether abrupt lithologic transitions represent sudden land-level
changes or normal variability in tidal sedimentation due to storm-induced or regional sea-level changes, we
considered the criteria that Nelson et al. [1996] and Hemphill-Haley [1995] used to infer sudden coseismic
land-level change in tidal settings: (i) the suddenness of vertical change, (ii) the coincidence of land-level
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change with tsunami deposits, (iii) the lateral extent of submerged or uplifted surfaces, (iv) changes in the
composition of diatom and foraminiferal assemblages across sharp peat/silt and silt/peat boundaries, and (v)
lasting change. Using these criteria, five contacts in core WS-05 (C1–C5; Figures 2, 3, and S2) that correlate
along Transect 3 show evidence consistent with sudden land-level change. Two contacts (C1 and C4) mark
sudden relative sea-level rise (coseismic subsidence), whereas three others (C2, C3, and C5) are consistent
with abrupt relative sea-level fall (coseismic uplift) (Figures 2, 3, and S2).

Evidence for the most recent episode of sudden land-level change is a sharp, silt-over-peat contact (contact
C1, Figures 2b and 3) at 22 cm depth in core WS-05. A shift from a fresh-brackish, high-marsh diatom
assemblage in the peat dominated by Navicula pusilla, Navicula peregrina, and Diploneis ovalis to a mixed low-
marsh/tidal flat assemblage containing Actinocyclus normanii, Actinoptychus senarius, and Synedra fasciculata
in the silt implies a sudden rise in relative sea level, consistent with tectonic subsidence (Figure 3 and Table S2).
Foraminifers above contact C1 consist of a mixed assemblage of high-marsh, low-marsh, and tidal flat species
while foraminifers below the contact consist almost entirely of Balticammina pseudomacrescens, a common
foraminifer found in the high salt marsh on Sitkinak [Kemp et al., 2013] suggesting that the peat formed near the
highest reach of daily tides prior to sudden subsidence. Contact C1 is covered by a thin sandy layer in nearby
core WS-03, but we could not find a correlative sand layer in higher cores inland. Maximum 137Cs activity
straddles contact C1 at 21–23 cm depth and records the peak of atmospheric flux associated with nuclear
testing in 1963, dating the subsidence to A.D. 1954–1964 (Figure 3 and Table S3). Novarupta-Katmai pumice
at 28 cm depth, erupted in A.D. 1912 and possibly rafted into the site [Fierstein and Hildreth, 1992], provides
a maximum age for contact C1 (Table S4). The lithologic, microfossil, and geochronologic evidence is
consistent with subsidence of the south coast of Sitkinak Island during the A.D. 1964 rupture, accompanied
by little or no tsunami inundation as reported by Britt [1965] and Plafker [1969].

Figure 2. (a) Southern Sitkinak Lagoon site map showing generalizedmap units, core and exposure Transects 1–3, and core
locations (open circles). (b) Core and exposure Transect 3 showing uplift and subsidence contacts C1–C5. (c) Core Transect 2
showing sand layers A–F and radiocarbon ages. Detail of the uppermost portion of core TA-03 containing sand layer A
shows a computerized tomography scan (darker = denser), 137Cs and 210Pb activity depth profiles, and AMS 14C dates.
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Sudden subsidence is also recorded at 91 cm depth in core WS-05 (Figure 3), where sandy silt and pebbles
cap peat along the sharp irregular contact C4 (Figure S2). The presence of the tychoplanktonic marine taxa,
Hyalodiscus scoticus, in the sediments directly above contact C4 supports the interpretation of a marine
incursion (Figure 3 and Table S2). Foraminiferal assemblages, in particular the sudden appearance of
B. pseudomacrescens, imply an abrupt change from a freshwater to saltwater environment. Because contact
C4 is laterally extensive along tidal banks and the lithostratigraphy and microfossil data are similar to
subsidence recorded across contact C1 (Figure 3 and Tables S1 and S2), we interpret the bulk of evidence as
consistent with subsidence similar to that in A.D. 1964. AMS 14C ages from peat below contact C4 suggest this
sudden subsidence occurred after 640–510 cal yr B.P.

In contrast to subsidence recorded along contacts C1 and C4, we infer abrupt uplift where peat caps silt along
sharp contacts at C2, C3, and C5 (Figure 3). At contact C2 at 46 cm depth, an abrupt transition from a silt with a
diatom assemblage dominated by tidal flat species including Cocconeis scutellum, Paralia sulcata, and
S. fasciculata to an overlying peat with a freshwater marsh assemblage dominated by the salt-intolerant
benthic diatoms Pinnularia lagerstedtii and Eunotia lunaris is consistent with a sudden fall in relative sea level.
The absence of foraminifer B. pseudomacrescens above contact C2 also implies a sudden transition from
marine to freshwater conditions. A 1 cm sandy layer separates the peat and silt in core WS-05 and contains
a mix of fresh, brackish, and marine diatoms, which is a common characteristic of tsunami deposits
[Hemphill-Haley, 1995]. An AMS 14C age from seeds of the wetland sedge Scirpus spp. found in the peat layer

xx

Sim
pli

fie
d

   
  li

th
olo

gy

Opt
ica

l

CT 
Fre

sh
wat

er

Bra
ck

ish

M
ar

ine

Cos
eis

m
ic

   
  v

er
tic

al 
m

ot
ion

Diatoms

For
am

ini
fe

ra

mixed assemblage

Bp >95%

absence

Bp only

290-0

520-300

640-510

38
( AD 1912)

0 100%

Foraminifera

Simplified lithology

silt dominated

peat dominated

tephra and/or pumice

1050-790

sandy (disseminated)

0

13
7 Cs

   
 (m

Bq/
g)

(AD 1963)

20 40

D
ep

th
 (

m
)

1.2

0.6

0.8

0

0.2

0.4

1.0

520-300 cal yr BP,
2-sigma range

500-310

0 100%

0 100%

x
x

x
x

x

x
x

x

x

x

sand layer
C1

C2

C3

C4

C5

Figure 3. CoreWS-05 showing (from left to right) 137Cs activity depth profile, age (cal yr B.P.), simplified lithology (dashed lines are gradational (<3mm) contacts), optical
image, computerized tomography scan (red and orange=denser; blue and green= less dense; white=material removed prior to scanning), diatom assemblages as
percentages of total, foraminiferal assemblages (Bp: Balticammina pseudomacrescens), and direction of inferred coseismic land-level change across contacts C1–C5.

Geophysical Research Letters 10.1002/2014GL059380

BRIGGS ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2292



date the uplift to the seventeenth century or younger (Table S5). In section 4, we explore the possibility that
this uplift event and sand layer deposition occurred in A.D. 1788 and correlates with an extensive sandy bed
of similar age farther inland.

Lithologic and microfossil contrasts across contacts C3 (66 cm) and C5 (110 cm) in core WS-05 record uplift
similar to that observed across contact C2 (Figures 3 and S2). The epipelic tidal flat diatom C. scutellum
(contact C3) and C. scutellum and N. peregrina (contact C5) dominate the silty mud below each contact. The
peats overlying contacts C3 and C5 contain an abundance of freshwater marsh taxa including E. lunaris,
P. lagerstedtii, Pinnularia subcapitata, and Pinnularia ignobilis, implying a sudden fall in relative sea level.
A thin (<1mm) very fine grained sand in a second core from the same site separates the silt from the peat
above contact C3, consistent with tsunami inundation at the time of uplift. AMS 14C ages from the peat just
above contacts C3 and C5 suggest uplift occurred prior to 520–300 and 1050–790 cal yr B.P., respectively.

4. Evidence for the Late Fifteenth–Nineteenth Centuries (A.D. 1788?)
and Earlier Tsunamis

A shallow, nearly continuous sand layer extends up to 1.5 km inland along Transects 2 and 3 (layer A; Figures 2
and S1). The sand layer is 2–45mm thick, massive to normally graded in at least three beds, and occurs at
12–45 cm depth (Figures S1 and S3).

To obtain the minimum age of emplacement of layer A, we performed 137Cs and 210Pb analyses of the upper
30 cm of freshwater peat in core TA-03 in Transect 2, where the sand spans 19–24 cm depth (Figure 2d and
Table S3). Dual peaks in the 137Cs profile may represent downcore migration. We interpret the peak activity
at 3 cm as representing the global maximum atmospheric 137Cs deposition circa A.D. 1963. Disappearance of
excess (unsupported) 210Pb at about 14 cm depth corresponds to circa A.D. 1900 [Jeter, 2000], and so underlying
layer A was deposited before this time. The maximum age of sand layer A is given by the AMS 14C ages of a
rooted stem and seeds beneath the sand at 26 cm, which encompass the radiocarbon calibration plateau at
circa 520–300 cal yr B.P. (A.D. 1430–1640). Together the constraints provided by the 137Cs peak, 210Pb values,
and bounding 14C ages are consistent with a late fifteenth–nineteenth century age for the sand layer.

We identified five additional continuous sand layers similar to layer A (B–F) along Transect 2 (Figures 2c, S1, and
S3). The sand layers are 2mm to 20 cm thick and are bound by freshwater peat. They extend at least 1.5 km
inland, with the exception of layer B (>900m inland). A prominent dark gray tephra enables stratigraphic
correlation among Transect 2 cores. Sands B–F are similar in sorting, thickness, and continuity to layer A, and
they exhibit the same lithology as beach sand. Several of the sand layers thin landward, although Transect 2
reaches the inland extent of only layer B. We infer sands B–F are tsunami deposits, but more detailed mapping
and analysis will be required to confirm this interpretation. Limiting ages on sand layer deposition are obtained
from AMS 14C ages on detrital macrofossils in peat. Layer B was deposited after ~1.2 ka, layer C after ~1.8 ka, and
layers D and E after ~2.2 ka. Layer F was deposited prior to ~2.2 ka (Figures 2c and S1).

5. Discussion

Tidal stratigraphy beneath the marsh fringing the southern Sitkinak Lagoon records a complex sequence of
deposition that was strongly influenced by vertical land-level changes. We infer that abrupt silt-peat contacts
record uplift just prior to 290–0, 520–300, and 1050–790 cal yr B.P., and subsidence in A.D. 1964, and after
640–510 cal yr B.P. A sand sheet and abrupt uplift dating to the late fifteenth–nineteenth centuries most likely
represent coseismic uplift and tsunami inundation during the largest historical earthquake in the region prior
to A.D. 1964, in A.D. 1788. These observations allow us to draw several inferences about the rupture behavior
of the megathrust beneath Sitkinak.

A megathrust rupture on 21 July A.D. 1788 near Sitkinak Island caused a 3-10m tsunami that forced
relocation of the first Russian settlement at Three Saints Bay on southwestern Kodiak Island [Soloviev, 1990;
Lander, 1996] (Figure 1b). The late fifteenth–nineteenth century age estimate of sand layer A overlaps the age
of a horizon uplifted prior to 290–0 cal yr B.P. (Figures 2, S1, and S3). Taken together, evidence for sudden
uplift and marine inundation within these time constraints is consistent with coseismic uplift and tsunami
inundation in A.D. 1788. Identification of the July A.D. 1788 rupture on Sitkinak Island provides independent
evidence for historical reports of a paleoearthquake that spanned >450 km of the Alaska-Aleutian megathrust
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from Three Saints Bay to near the Shumagin Islands
[Lander, 1996]. A second rupture on 6 August
A.D. 1788 (Figure 1b) may have caused a >30m
tsunami to inundate Unga and Sanak Islands,
400–575 km west of Sitkinak [Lander, 1996], but at
present it is unclear if there were two ruptures or
only a single event in A.D. 1788.

We do not observe clear land-level change or
tsunami inundation on Sitkinak Island about the time
of the A.D. 1938 Mw 8.2 rupture (Figures 1 and 3),
in agreement with the lack of historical reports
of significant land-level change or tsunami
inundation along local and distant coastlines in
A.D. 1938 [Lander, 1996]. This implies that slip
in the A.D. 1938 rupture was relatively small and
far removed from Sitkinak Island as previously
suggested by the model of Johnson and Satake
[1994] that places a maximum of 3.3m coseismic
slip on a fault patch centered approximately
140 km southwest of the island.

Subsidence of the southern coast of Sitkinak Island in A.D. 1964 illustrates how coseismic surface uplift
changes abruptly to subsidence at the lateral ends of megathrust ruptures. The apparent inconsistency
between 0.45 ± 0.3m coseismic uplift reported on the northern coast in A.D. 1964, and our observation of
subsidence ~9 km to the southwest is explained by the arrest of rupture at or near the island. This
phenomenon matches predictions from elastic dislocation models of buried dipping faults, where
subsidence troughs wrap around the primary zone of uplift (Figure 4). Similar abrupt transitions from
decimeter-scale elastic uplift to subsidence over a few kilometers have been observed during recent
megathrust ruptures at Simeulue Island, Indonesia in A.D. 2004; Nias, Indonesia in A.D. 2005; and Tetepare,
Solomon Islands in A.D. 2007 [Briggs et al., 2006; Taylor et al., 2008].

The coseismic uplift and subsidence that we infer from Sitkinak Island stratigraphy and microfossils is
consistent with the position of the island at the western boundary of the A.D. 1964 rupture and above the
A.D. 1788 rupture patch. We propose a simple model whereby Sitkinak Island subsidence events correspond
to A.D. 1964-type ruptures, with slip terminating near the island and small or absent tsunami inundation
(as recorded in A.D. 1964) [Plafker and Kachadoorian, 1966]. By contrast, uplift occurs during ruptures that
extend beneath and beyond Sitkinak and can be accompanied by tsunamis along the island’s southern coast;
these may be A.D. 1788-type ruptures or ruptures with differing length and widths from those in A.D. 1788
and A.D. 1964. The variable uplift-subsidence history illustrates how islands located above megathrust locked
patches can record either uplift or subsidence depending on where ruptures stop along strike; as a
consequence, the paleoseismic record at individual sites at other subduction zones should not be assumed to
record exclusively coseismic uplift or subsidence.

The coastal record of vertical deformation on Sitkinak Island compares favorably to the paleoseismic record
from tidal stratigraphy on nearby Kodiak Island [Carver and Plafker, 2008]. A rupture at ~500 years ago
[Gilpin, 1995] observed at several Kodiak Island sites may correspond to uplift and a tsunami preserved in the
Sitkinak Lagoon with an age estimate of 520–300 cal yr B.P. Uplift of Sitkinak Island before 1050–790 cal yr B.P.
overlaps with the penultimate rupture identified along the A.D. 1964 rupture zone at 900–840 cal yr B.P.
[Shennan et al., 2014], but present uncertainties are too large to confidently correlate these ruptures.

Because the A.D. 1788 rupture extended from hundreds of kilometers southwest of Sitkinak Island well into
the A.D. 1964 rupture area (Figure 1b), the island does not appear to overlie a section of the megathrust that
acts as a persistent barrier to great ruptures. The mixed record of subsidence and uplift prior to A.D. 1788
records ruptures that extended beneath Sitkinak Island or stopped nearby, adding additional support to this
idea. Furthermore, it appears that the A.D. 1938 rupture contributed little to moment release adjacent to the
A.D. 1964 western rupture edge. Occasional resistance to seismic rupture beneath Sitkinak Island may reflect
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unrecognized structural, rheological, or dynamic controls [Collot et al., 2004;Wang and Bilek, 2014; Noda and
Lapusta, 2013] or may only be the apparent outcome of a short sequence drawn from a random process
[Kagan et al., 2012]. On the basis of historical records and the paleoseismic history inferred here from
land-level changes, we recommend that the assumption of a fixed megathrust rupture boundary near
Sitkinak Island be relaxed for the purposes of seismic hazard analysis.
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